Suppr超能文献

植物病害的病原基因组学与管理

Pathogenomics and Management of Diseases in Plants.

作者信息

Rampersad Sephra N

机构信息

Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago-West Indies.

出版信息

Pathogens. 2020 May 1;9(5):340. doi: 10.3390/pathogens9050340.

Abstract

There is an urgency to supplant the heavy reliance on chemical control of diseases in different economically important, staple food crops due to development of resistance in the pathogen population, the high cost of production to the risk-averse grower, and the concomitant environmental impacts. Pathogenomics has enabled (i) the creation of genetic inventories which identify those putative genes, regulators, and effectors that are associated with virulence, pathogenicity, and primary and secondary metabolism; (ii) comparison of such genes among related pathogens; (iii) identification of potential genetic targets for chemical control; and (iv) better characterization of the complex dynamics of host-microbe interactions that lead to disease. This type of genomic data serves to inform host-induced gene silencing (HIGS) technology for targeted disruption of transcription of select genes for the control of diseases. This review discusses the various repositories and browser access points for comparison of genomic data, the strategies for identification and selection of pathogenicity- and virulence-associated genes and effectors in different species, HIGS and successful disease control trials with a consideration of loss of RNAi, off-target effects, and future challenges in applying HIGS for management of diseases.

摘要

由于病原菌群体产生抗性、风险规避型种植者的生产成本高昂以及随之而来的环境影响,迫切需要改变对不同经济上重要的主粮作物病害进行化学防治的严重依赖。病原基因组学已实现:(i)创建遗传目录,识别那些与毒力、致病性以及初级和次级代谢相关的假定基因、调节因子和效应子;(ii)比较相关病原菌之间的此类基因;(iii)确定化学防治的潜在遗传靶点;(iv)更好地表征导致病害的宿主-微生物相互作用的复杂动态。这类基因组数据有助于为宿主诱导基因沉默(HIGS)技术提供信息,以靶向破坏特定基因的转录来控制病害。本综述讨论了用于比较基因组数据的各种数据库和浏览器访问点、在不同物种中鉴定和选择与致病性和毒力相关的基因及效应子的策略、HIGS以及成功的病害防治试验,并考虑了RNA干扰的丧失、脱靶效应以及应用HIGS进行病害管理的未来挑战。

相似文献

1
Pathogenomics and Management of Diseases in Plants.
Pathogens. 2020 May 1;9(5):340. doi: 10.3390/pathogens9050340.
2
Host-Induced Silencing of Genes Enhances the Resistance of to Head Blight.
Front Plant Sci. 2019 Oct 30;10:1362. doi: 10.3389/fpls.2019.01362. eCollection 2019.
3
Cross-Kingdom RNAi of Pathogen Effectors Leads to Quantitative Adult Plant Resistance in Wheat.
Front Plant Sci. 2020 Mar 10;11:253. doi: 10.3389/fpls.2020.00253. eCollection 2020.
5
Fusarium pathogenomics.
Annu Rev Microbiol. 2013;67:399-416. doi: 10.1146/annurev-micro-092412-155650.
6
Pathogenomics Characterization of an Emerging Fungal Pathogen, f. sp. in Greenhouse Tomato Production Systems.
Front Microbiol. 2020 Aug 27;11:1995. doi: 10.3389/fmicb.2020.01995. eCollection 2020.
7
Field pathogenomics of head blight reveals pathogen transcriptome differences due to host resistance.
Mycologia. 2019 Jul-Aug;111(4):563-573. doi: 10.1080/00275514.2019.1607135. Epub 2019 May 21.
8
Harnessing RNA interference for the control of Fusarium species: A critical review.
Mol Plant Pathol. 2024 Oct;25(10):e70011. doi: 10.1111/mpp.70011.
10
Host-induced silencing of Fusarium culmorum genes protects wheat from infection.
J Exp Bot. 2016 Sep;67(17):4979-91. doi: 10.1093/jxb/erw263. Epub 2016 Aug 18.

引用本文的文献

1
From Morphology to Multi-Omics: A New Age of Fusarium Research.
Pathogens. 2025 Aug 1;14(8):762. doi: 10.3390/pathogens14080762.
2
Identification of a novel hypovirulence-inducing ourmia-like mycovirus from causing ginseng () root rot.
Front Microbiol. 2025 Jul 2;16:1609431. doi: 10.3389/fmicb.2025.1609431. eCollection 2025.
3
Synergistic effects of and biochar on the biocontrol of two soil-borne phytopathogens in chickpeas.
Front Microbiol. 2025 May 1;16:1583114. doi: 10.3389/fmicb.2025.1583114. eCollection 2025.
4
Species Associated with Diseases of Citrus: A Comprehensive Review.
J Fungi (Basel). 2025 Mar 28;11(4):263. doi: 10.3390/jof11040263.
5
A New Root and Trunk Rot Disease of Grapevine Plantlets Caused by in Four Species Complexes.
J Fungi (Basel). 2025 Mar 17;11(3):230. doi: 10.3390/jof11030230.
6
Algae and Cyanobacteria Fatty Acids and Bioactive Metabolites: Natural Antifungal Alternative Against sp.
Microorganisms. 2025 Feb 17;13(2):439. doi: 10.3390/microorganisms13020439.
7
Biocontrol of : Antifungal Activity of Chitosan and Induction of Defence Enzymes.
Plants (Basel). 2025 Feb 1;14(3):431. doi: 10.3390/plants14030431.
9
Harnessing RNA interference for the control of Fusarium species: A critical review.
Mol Plant Pathol. 2024 Oct;25(10):e70011. doi: 10.1111/mpp.70011.
10
Baseline tebuconazole sensitivity and potential resistant risk in Fusarium Graminearum.
BMC Plant Biol. 2024 Aug 21;24(1):789. doi: 10.1186/s12870-024-05206-1.

本文引用的文献

1
RNA-Spray-Mediated Silencing of and Genes Improve Barley Disease Resistance.
Front Plant Sci. 2020 Apr 29;11:476. doi: 10.3389/fpls.2020.00476. eCollection 2020.
2
Structural basis of Fusarium myosin I inhibition by phenamacril.
PLoS Pathog. 2020 Mar 12;16(3):e1008323. doi: 10.1371/journal.ppat.1008323. eCollection 2020 Mar.
5
Pan-genomics in the human genome era.
Nat Rev Genet. 2020 Apr;21(4):243-254. doi: 10.1038/s41576-020-0210-7. Epub 2020 Feb 7.
6
Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the genes.
RNA Biol. 2020 Apr;17(4):463-473. doi: 10.1080/15476286.2019.1700033. Epub 2020 Jan 13.
7
Host-Induced Silencing of Genes Enhances the Resistance of to Head Blight.
Front Plant Sci. 2019 Oct 30;10:1362. doi: 10.3389/fpls.2019.01362. eCollection 2019.
9
Host-induced gene silencing of Foc TR4 ERG6/11 genes exhibits superior resistance to Fusarium wilt of banana.
Plant Biotechnol J. 2020 Jan;18(1):11-13. doi: 10.1111/pbi.13204. Epub 2019 Jul 15.
10
Small RNA Functions as a Trafficking Effector in Plant Immunity.
Int J Mol Sci. 2019 Jun 9;20(11):2816. doi: 10.3390/ijms20112816.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验