College of Mathematical Sciences, Harbin Engineering University, Harbin, Heilongjiang, 150001, China.
School of Engineering and Mathematical Sciences, Melbourne, La Trobe University, 3086, Australia.
Math Biosci. 2020 Aug;326:108391. doi: 10.1016/j.mbs.2020.108391. Epub 2020 Jun 1.
The ongoing Coronavirus Disease 2019 (COVID-19) pandemic threatens the health of humans and causes great economic losses. Predictive modeling and forecasting the epidemic trends are essential for developing countermeasures to mitigate this pandemic. We develop a network model, where each node represents an individual and the edges represent contacts between individuals where the infection can spread. The individuals are classified based on the number of contacts they have each day (their node degrees) and their infection status. The transmission network model was respectively fitted to the reported data for the COVID-19 epidemic in Wuhan (China), Toronto (Canada), and the Italian Republic using a Markov Chain Monte Carlo (MCMC) optimization algorithm. Our model fits all three regions well with narrow confidence intervals and could be adapted to simulate other megacities or regions. The model projections on the role of containment strategies can help inform public health authorities to plan control measures.
正在持续的 2019 年冠状病毒病(COVID-19)大流行威胁着人类的健康,并造成巨大的经济损失。预测模型和预测疫情趋势对于制定减轻这一大流行病的对策至关重要。我们开发了一个网络模型,其中每个节点代表一个个体,而边缘代表个体之间可以传播感染的接触。个体根据他们每天的接触次数(他们的节点度数)和感染状态进行分类。使用马尔可夫链蒙特卡罗(MCMC)优化算法,分别将传染病传播网络模型拟合到武汉(中国)、多伦多(加拿大)和意大利共和国报告的 COVID-19 疫情数据中。我们的模型很好地拟合了这三个地区,置信区间较窄,并且可以适应模拟其他特大城市或地区。模型对遏制策略作用的预测有助于为公共卫生当局提供规划控制措施的信息。