Suppr超能文献

基于自然语言处理的原发性进行性失语症患者的言语产生部分分析。

Part of Speech Production in Patients With Primary Progressive Aphasia: An Analysis Based on Natural Language Processing.

机构信息

Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD.

Department of Otolaryngology, Johns Hopkins Medicine, Baltimore MD.

出版信息

Am J Speech Lang Pathol. 2021 Feb 11;30(1S):466-480. doi: 10.1044/2020_AJSLP-19-00114. Epub 2020 Jul 22.

Abstract

Background Primary progressive aphasia (PPA) is a neurodegenerative disorder characterized by a progressive decline of language functions. Its symptoms are grouped into three PPA variants: nonfluent PPA, logopenic PPA, and semantic PPA. Grammatical deficiencies differ depending on the PPA variant. Aims This study aims to determine the differences between PPA variants with respect to part of speech (POS) production and to identify morphological markers that classify PPA variants using machine learning. By fulfilling these aims, the overarching goal is to provide objective measures that can facilitate clinical diagnosis, evaluation, and prognosis. Method and Procedure Connected speech productions from PPA patients produced in a picture description task were transcribed, and the POS class of each word was estimated using natural language processing, namely, POS tagging. We then implemented a twofold analysis: (a) linear regression to determine how patients with nonfluent PPA, semantic PPA, and logopenic PPA variants differ in their POS productions and (b) a supervised classification analysis based on POS using machine learning models (i.e., random forests, decision trees, and support vector machines) to subtype PPA variants and generate feature importance (FI). Outcome and Results Using an automated analysis of a short picture description task, this study showed that content versus function words can distinguish patients with nonfluent PPA, semantic PPA, and logopenic PPA variants. Verbs were less important as distinguishing features of patients with different PPA variants than earlier thought. Finally, the study showed that among the most important distinguishing features of PPA variants were elaborative speech elements, such as adjectives and adverbs.

摘要

背景

原发性进行性失语症(PPA)是一种以语言功能进行性下降为特征的神经退行性疾病。其症状分为三种 PPA 变异型:非流利型 PPA、语义性 PPA 和完全性失语症。语法缺陷取决于 PPA 变异型。

目的

本研究旨在确定 PPA 变异型在部分词性(POS)产生方面的差异,并确定使用机器学习对 PPA 变异型进行分类的形态学标志物。通过实现这些目标,总体目标是提供有助于临床诊断、评估和预后的客观措施。

方法和程序

从 PPA 患者在图片描述任务中产生的连续语音中进行转录,并使用自然语言处理(即 POS 标记)估计每个单词的 POS 类别。然后,我们进行了两项分析:(a)线性回归,以确定非流利型 PPA、语义性 PPA 和完全性失语症变异型患者在其 POS 产生方面的差异;(b)基于 POS 的监督分类分析,使用机器学习模型(即随机森林、决策树和支持向量机)对 PPA 变异型进行亚型分类,并生成特征重要性(FI)。

结果

使用简短图片描述任务的自动化分析,本研究表明,内容词与功能词可以区分非流利型 PPA、语义性 PPA 和完全性失语症变异型患者。与之前的想法相比,动词作为不同 PPA 变异型患者的区分特征不太重要。最后,该研究表明,在 PPA 变异型的最重要区分特征中,有形容词和副词等详尽的言语元素。

相似文献

5
Primary Progressive Aphasia and Stroke Aphasia.原发性进行性失语症与中风失语症。
Continuum (Minneap Minn). 2018 Jun;24(3, BEHAVIORAL NEUROLOGY AND PSYCHIATRY):745-767. doi: 10.1212/CON.0000000000000618.

引用本文的文献

3
AI-assisted assessment and treatment of aphasia: a review.人工智能辅助的失语症评估与治疗:综述
Front Public Health. 2024 Aug 29;12:1401240. doi: 10.3389/fpubh.2024.1401240. eCollection 2024.
4
Open Brain AI and language assessment.开放式脑人工智能与语言评估。
Front Hum Neurosci. 2024 Aug 6;18:1421435. doi: 10.3389/fnhum.2024.1421435. eCollection 2024.

本文引用的文献

1
Using narratives in differential diagnosis of neurodegenerative syndromes.使用叙事在神经退行性综合征的鉴别诊断中。
J Commun Disord. 2020 May-Jun;85:105994. doi: 10.1016/j.jcomdis.2020.105994. Epub 2020 Apr 27.
6
Ten quick tips for machine learning in computational biology.计算生物学中机器学习的十条快速提示。
BioData Min. 2017 Dec 8;10:35. doi: 10.1186/s13040-017-0155-3. eCollection 2017.
8
Grammatical Impairments in PPA.原发性进行性失语中的语法障碍
Aphasiology. 2014 Sep;28(8-9):1018-1037. doi: 10.1080/02687038.2014.912744.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验