Department of Biomedical Engineering, Duke University, Durham, NC, USA.
Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
Nat Chem. 2020 Sep;12(9):814-825. doi: 10.1038/s41557-020-0511-7. Epub 2020 Aug 3.
Phase separation of intrinsically disordered proteins (IDPs) is a remarkable feature of living cells to dynamically control intracellular partitioning. Despite the numerous new IDPs that have been identified, progress towards rational engineering in cells has been limited. To address this limitation, we systematically scanned the sequence space of native IDPs and designed artificial IDPs (A-IDPs) with different molecular weights and aromatic content, which exhibit variable condensate saturation concentrations and temperature cloud points in vitro and in cells. We created A-IDP puncta using these simple principles, which are capable of sequestering an enzyme and whose catalytic efficiency can be manipulated by the molecular weight of the A-IDP. These results provide a robust engineered platform for creating puncta with new, phase-separation-mediated control of biological function in living cells.
无定形蛋白质(IDPs)的液-液相分离是活细胞中一种显著的动态控制细胞内分区的特征。尽管已经鉴定出许多新的 IDPs,但在细胞中进行合理的工程设计方面的进展仍然有限。为了解决这一限制,我们系统地扫描了天然 IDPs 的序列空间,并设计了具有不同分子量和芳香族含量的人工 IDPs(A-IDPs),它们在体外和细胞内表现出不同的凝聚物饱和度浓度和温度云点。我们使用这些简单的原则创建了 A-IDP 小点,这些小点能够隔离一种酶,并且其催化效率可以通过 A-IDP 的分子量来操纵。这些结果为在活细胞中创建具有新的、相分离介导的生物功能控制的小点提供了一个强大的工程平台。