Suppr超能文献

预测和分析中国的 COVID-19 疫情:基于 SEIRD、LSTM 和 GWR 模型。

Predicting and analyzing the COVID-19 epidemic in China: Based on SEIRD, LSTM and GWR models.

机构信息

Taikang Pension & Insurance Co., Ltd., Beijing, China.

出版信息

PLoS One. 2020 Aug 27;15(8):e0238280. doi: 10.1371/journal.pone.0238280. eCollection 2020.

Abstract

In December 2019, the novel coronavirus pneumonia (COVID-19) occurred in Wuhan, Hubei Province, China. The epidemic quickly broke out and spread throughout the country. Now it becomes a pandemic that affects the whole world. In this study, three models were used to fit and predict the epidemic situation in China: a modified SEIRD (Susceptible-Exposed-Infected-Recovered-Dead) dynamic model, a neural network method LSTM (Long Short-Term Memory), and a GWR (Geographically Weighted Regression) model reflecting spatial heterogeneity. Overall, all the three models performed well with great accuracy. The dynamic SEIRD prediction APE (absolute percent error) of China had been ≤ 1.0% since Mid-February. The LSTM model showed comparable accuracy. The GWR model took into account the influence of geographical differences, with R2 = 99.98% in fitting and 97.95% in prediction. Wilcoxon test showed that none of the three models outperformed the other two at the significance level of 0.05. The parametric analysis of the infectious rate and recovery rate demonstrated that China's national policies had effectively slowed down the spread of the epidemic. Furthermore, the models in this study provided a wide range of implications for other countries to predict the short-term and long-term trend of COVID-19, and to evaluate the intensity and effect of their interventions.

摘要

2019 年 12 月,新型冠状病毒肺炎(COVID-19)在中国湖北省武汉市发生。疫情迅速爆发并蔓延至全国。如今,它已成为影响全球的大流行病。在本研究中,使用了三种模型来拟合和预测中国的疫情:修正的 SEIRD(易感-暴露-感染-恢复-死亡)动力学模型、神经网络方法 LSTM(长短期记忆)和反映空间异质性的 GWR(地理加权回归)模型。总体而言,所有三种模型都表现出很高的准确性。自 2 月中旬以来,动态 SEIRD 预测中国的 APE(绝对百分比误差)一直≤1.0%。LSTM 模型表现出相当的准确性。GWR 模型考虑了地理差异的影响,拟合和预测的 R2 分别为 99.98%和 97.95%。Wilcoxon 检验表明,在 0.05 的显著性水平下,这三种模型均没有一种优于其他两种。感染率和恢复率的参数分析表明,中国的国家政策有效地减缓了疫情的传播。此外,本研究中的模型为其他国家预测 COVID-19 的短期和长期趋势,并评估其干预措施的强度和效果提供了广泛的启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f69d/7451659/157b2837fc42/pone.0238280.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验