Suppr超能文献

设计并解读可能改变我们对生物学理解的“多组学”实验。

Designing and interpreting 'multi-omic' experiments that may change our understanding of biology.

作者信息

Haas Robert, Zelezniak Aleksej, Iacovacci Jacopo, Kamrad Stephan, Townsend StJohn, Ralser Markus

机构信息

The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom.

Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Göteborg, Sweden.

出版信息

Curr Opin Syst Biol. 2017 Dec;6:37-45. doi: 10.1016/j.coisb.2017.08.009.

Abstract

Most biological mechanisms involve more than one type of biomolecule, and hence operate not solely at the level of either genome, transcriptome, proteome, metabolome or ionome. Datasets resulting from single-omic analysis are rapidly increasing in throughput and quality, rendering multi-omic studies feasible. These should offer a comprehensive, structured and interactive overview of a biological mechanism. However, combining single-omic datasets in a meaningful manner has so far proved challenging, and the discovery of new biological information lags behind expectation. One reason is that experiments conducted in different laboratories can typically not to be combined without restriction. Second, the interpretation of multi-omic datasets represents a significant challenge by nature, as the biological datasets are heterogeneous not only for technical, but also for biological, chemical, and physical reasons. Here, multi-layer network theory and methods of artificial intelligence might contribute to solve these problems. For the efficient application of machine learning however, biological datasets need to become more systematic, more precise - and much larger. We conclude our review with basic guidelines for the successful set-up of a multi-omic experiment.

摘要

大多数生物机制涉及不止一种类型的生物分子,因此并非仅在基因组、转录组、蛋白质组、代谢组或离子组层面起作用。单组学分析产生的数据集在通量和质量上迅速增加,使得多组学研究变得可行。这些研究应能提供对生物机制的全面、结构化和交互式概述。然而,迄今为止,以有意义的方式组合单组学数据集已证明具有挑战性,新生物信息的发现落后于预期。一个原因是,在不同实验室进行的实验通常不能无限制地组合。其次,多组学数据集的解释本质上是一项重大挑战,因为生物数据集不仅由于技术原因,还由于生物学、化学和物理原因而具有异质性。在此,多层网络理论和人工智能方法可能有助于解决这些问题。然而,为了有效应用机器学习,生物数据集需要变得更加系统、更加精确,并且规模更大得多。我们以成功开展多组学实验的基本指南结束我们的综述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c26/7477987/8976d0fa86f6/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验