Electrical and Computer Engineering Department, Baylor University, One Bear Place #97356, Waco, TX 76798, USA.
Sensors (Basel). 2020 Oct 19;20(20):5901. doi: 10.3390/s20205901.
The demand for biosensor technology has grown drastically over the last few decades, mainly in disease diagnosis, drug development, and environmental health and safety. Optical resonator-based biosensors have been widely exploited to achieve highly sensitive, rapid, and label-free detection of biological analytes. The advancements in microfluidic and micro/nanofabrication technologies allow them to be miniaturized and simultaneously detect various analytes in a small sample volume. By virtue of these advantages and advancements, the optical resonator-based biosensor is considered a promising platform not only for general medical diagnostics but also for point-of-care applications. This review aims to provide an overview of recent progresses in label-free optical resonator-based biosensors published mostly over the last 5 years. We categorized them into Fabry-Perot interferometer-based and whispering gallery mode-based biosensors. The principles behind each biosensor are concisely introduced, and recent progresses in configurations, materials, test setup, and light confinement methods are described. Finally, the current challenges and future research topics of the optical resonator-based biosensor are discussed.
过去几十年来,生物传感器技术的需求急剧增长,主要应用于疾病诊断、药物开发以及环境健康和安全领域。基于光学谐振腔的生物传感器已经被广泛开发,用于实现对生物分析物的高灵敏度、快速和无标记检测。微流控和微纳加工技术的进步使它们能够小型化,并同时在小体积样品中检测各种分析物。由于这些优势和进步,基于光学谐振腔的生物传感器不仅被认为是一般医疗诊断的有前途的平台,而且也是即时检测应用的有前途的平台。本综述旨在提供过去 5 年中主要发表的基于无标记光学谐振腔的生物传感器的最新进展概述。我们将它们分为基于法布里-珀罗干涉仪和基于 whispering gallery mode 的生物传感器。简要介绍了每种生物传感器背后的原理,并描述了它们在配置、材料、测试设置和光限制方法方面的最新进展。最后,讨论了基于光学谐振腔的生物传感器的当前挑战和未来研究课题。