Suppr超能文献

优化放射组学分析中的肿瘤周围区域大小以预测乳腺癌前哨淋巴结状态。

Optimizing the Peritumoral Region Size in Radiomics Analysis for Sentinel Lymph Node Status Prediction in Breast Cancer.

机构信息

Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA; Department of Radiation Oncology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Wauwatosa, WI 53226, USA.

Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794, USA.

出版信息

Acad Radiol. 2022 Jan;29 Suppl 1(Suppl 1):S223-S228. doi: 10.1016/j.acra.2020.10.015. Epub 2020 Nov 5.

Abstract

RATIONALE AND OBJECTIVES

Peritumoral features have been suggested to be useful in improving the prediction performance of radiomic models. The aim of this study is to systematically investigate the prediction performance improvement for sentinel lymph node (SLN) status in breast cancer from peritumoral features in radiomic analysis by exploring the effect of peritumoral region sizes.

MATERIALS AND METHODS

This retrospective study was performed using dynamic contrast-enhanced MRI scans of 162 breast cancer patients. The effect of peritumoral features was evaluated in a radiomics pipeline for predicting SLN metastasis in breast cancer. Peritumoral regions were generated by dilating the tumor regions-of-interest (ROIs) manually annotated by two expert radiologists, with thicknesses of 2 mm, 4 mm, 6 mm, and 8 mm. The prediction models were established in the training set (∼67% of cases) using the radiomics pipeline with and without peritumoral features derived from different peritumoral thicknesses. The prediction performance was tested in an independent validation set (the remaining ∼33%).

RESULTS

For this specific application, the accuracy in the validation set when using the two radiologists' ROIs could be both improved from 0.704 to 0.796 by incorporating peritumoral features. The choice of the peritumoral size could affect the level of improvement.

CONCLUSION

This study systematically investigates the effect of peritumoral region sizes in radiomic analysis for prediction performance improvement. The choice of the peritumoral size is dependent on the ROI drawing and would affect the final prediction performance of radiomic models, suggesting that peritumoral features should be optimized in future radiomics studies.

摘要

背景与目的

瘤周特征被认为有助于提高放射组学模型的预测性能。本研究旨在通过探索瘤周区域大小的影响,系统研究放射组学分析中瘤周特征对乳腺癌前哨淋巴结(SLN)状态预测的改善作用。

材料与方法

本回顾性研究使用了 162 例乳腺癌患者的动态对比增强 MRI 扫描。通过手动扩展两位专家放射科医生标注的肿瘤感兴趣区(ROI),分别生成 2、4、6 和 8mm 厚的瘤周区域,来评估瘤周特征对乳腺癌 SLN 转移预测的影响。使用包含和不包含不同瘤周厚度的瘤周特征的放射组学管道,在训练集(约 67%的病例)中建立预测模型。在独立验证集(其余约 33%的病例)中对预测性能进行测试。

结果

对于这种特定的应用,当使用两位放射科医生的 ROI 时,验证集中的准确性可以从 0.704 提高到 0.796,通过纳入瘤周特征可以提高。瘤周大小的选择会影响改进的程度。

结论

本研究系统地研究了放射组学分析中瘤周区域大小对预测性能改善的影响。瘤周大小的选择取决于 ROI 的绘制,会影响放射组学模型的最终预测性能,这表明在未来的放射组学研究中应优化瘤周特征。

相似文献

引用本文的文献

本文引用的文献

10
Radiomics: the bridge between medical imaging and personalized medicine.放射组学:医学影像与个性化医疗之间的桥梁。
Nat Rev Clin Oncol. 2017 Dec;14(12):749-762. doi: 10.1038/nrclinonc.2017.141. Epub 2017 Oct 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验