Suppr超能文献

基于荧光共振能量转移的用于定量细胞外囊泡和其他复杂组成囊泡的方法。

FRET-Based Assay for the Quantification of Extracellular Vesicles and Other Vesicles of Complex Composition.

机构信息

Section of Virology, Department of Clinical Microbiology, Umeå University, 901 85 Umeå, Sweden.

Wallenberg Centre for Molecular Medicine, Umeå University, 901 85 Umeå, Sweden.

出版信息

Anal Chem. 2020 Dec 1;92(23):15336-15343. doi: 10.1021/acs.analchem.0c02271. Epub 2020 Nov 12.

Abstract

Research in the field of extracellular vesicles is rapidly expanding and finding footholds in many areas of medical science. However, the availability of methodologies to quantify the concentration of membrane material present in a sample remains limited. Herein, we present a novel approach for the quantification of vesicle material, specifically the quantification of the total lipid membrane surface area, found in a sample using Förster resonance energy transfer (FRET). In this assay, sonication is used to drive the fusion between vesicles in the sample to be quantified and liposomes containing a pair of FRET fluorophores. The change in emission spectrum upon vesicle fusion is directly related to the total membrane surface area of the sample added, and a calibration curve allows for the quantification of a variety of vesicle species, including enveloped viruses, bacterial outer membrane vesicles, and mammalian extracellular vesicles. Without extensive optimization of experimental parameters, we were able to quantify down to ∼10 vesicles/mL, using as little as 60 μL of the sample. The assay precision was comparable to that of a commercial nanoparticle tracking analysis system. While its limit of detection was slightly higher, the FRET assay is superior for the detection of small vesicles, as its performance is vesicle-size-independent. Taken together, the FRET assay is a simple, robust, and versatile method for the quantification of a variety of purified vesicle samples.

摘要

细胞外囊泡领域的研究正在迅速发展,并在医学科学的许多领域找到了立足点。然而,用于定量样品中存在的膜材料浓度的方法仍然有限。在此,我们提出了一种新的方法来定量囊泡材料,特别是使用荧光共振能量转移(FRET)定量样品中总脂质膜表面积的方法。在该测定中,超声处理用于驱动待定量样品中的囊泡融合和含有一对 FRET 荧光团的脂质体。囊泡融合后发射光谱的变化与加入样品的总膜表面积直接相关,校准曲线允许定量各种囊泡种类,包括包膜病毒、细菌外膜囊泡和哺乳动物细胞外囊泡。无需对实验参数进行广泛优化,我们就能够使用少至 60 μL 的样品定量低至约 10 个囊泡/mL。该测定的精密度与商业纳米颗粒跟踪分析系统相当。虽然其检测限略高,但 FRET 测定法更适合检测小囊泡,因为其性能与囊泡大小无关。总的来说,FRET 测定法是一种简单、稳健且通用的方法,可用于定量各种纯化的囊泡样品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d581/7735656/d22e09c9585e/ac0c02271_0002.jpg

相似文献

1
FRET-Based Assay for the Quantification of Extracellular Vesicles and Other Vesicles of Complex Composition.
Anal Chem. 2020 Dec 1;92(23):15336-15343. doi: 10.1021/acs.analchem.0c02271. Epub 2020 Nov 12.
3
Probing protein-lipid interactions by FRET between membrane fluorophores.
Methods Appl Fluoresc. 2016 Sep 21;4(3):034014. doi: 10.1088/2050-6120/4/3/034014.
5
Comparison of Methods for Quantifying Extracellular Vesicles of Gram-Negative Bacteria.
Int J Mol Sci. 2023 Oct 11;24(20):15096. doi: 10.3390/ijms242015096.
6
A nano flow cytometer for single lipid vesicle analysis.
Lab Chip. 2017 Feb 28;17(5):830-841. doi: 10.1039/c6lc01302c.
8
Fluorescence Resonance Energy Transfer (FRET)-Based Analysis of Lipoplexes.
Methods Mol Biol. 2017;1522:251-256. doi: 10.1007/978-1-4939-6591-5_20.
9
In Vitro Measurement of Sphingolipid Intermembrane Transport Illustrated by GLTP Superfamily Members.
Methods Mol Biol. 2019;1949:237-256. doi: 10.1007/978-1-4939-9136-5_17.
10
Single-Molecule Fluorescence Measurement of SNARE-Mediated Vesicle Fusion.
Methods Mol Biol. 2019;1860:335-344. doi: 10.1007/978-1-4939-8760-3_22.

引用本文的文献

1
Recruitment of apolipoprotein E facilitates Herpes simplex virus 1 attachment and release.
Npj Viruses. 2025 Feb 22;3(1):13. doi: 10.1038/s44298-025-00099-9.
2
Host Immune Cell Membrane Deformability Governs the Uptake Route of Malaria-Derived Extracellular Vesicles.
ACS Nano. 2025 Mar 18;19(10):9760-9778. doi: 10.1021/acsnano.4c07503. Epub 2025 Mar 3.
6
Integration of secreted signaling molecule sensing on cell monitoring platforms: a critical review.
Anal Bioanal Chem. 2024 Dec;416(30):7249-7266. doi: 10.1007/s00216-024-05435-1. Epub 2024 Jul 24.
7
Emerging Designs and Applications for Biomembrane Biosensors.
Annu Rev Anal Chem (Palo Alto Calif). 2024 Jul;17(1):339-366. doi: 10.1146/annurev-anchem-061622-042618.
10
Synergistic vesicle-vector systems for targeted delivery.
J Nanobiotechnology. 2024 Jan 3;22(1):6. doi: 10.1186/s12951-023-02275-6.

本文引用的文献

1
2
Protein Profiling and Sizing of Extracellular Vesicles from Colorectal Cancer Patients via Flow Cytometry.
ACS Nano. 2018 Jan 23;12(1):671-680. doi: 10.1021/acsnano.7b07782. Epub 2018 Jan 8.
4
Methods for the physical characterization and quantification of extracellular vesicles in biological samples.
Biochim Biophys Acta Gen Subj. 2017 Jan;1861(1 Pt A):3164-3179. doi: 10.1016/j.bbagen.2016.07.028. Epub 2016 Aug 3.
5
Exosome-delivered microRNAs modulate the inflammatory response to endotoxin.
Nat Commun. 2015 Jun 18;6:7321. doi: 10.1038/ncomms8321.
6
Immune modulation by bacterial outer membrane vesicles.
Nat Rev Immunol. 2015 Jun;15(6):375-87. doi: 10.1038/nri3837. Epub 2015 May 15.
7
Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration.
FEBS Lett. 2015 May 8;589(11):1257-65. doi: 10.1016/j.febslet.2015.03.031. Epub 2015 Apr 8.
8
Quantitative real-time single particle analysis of virions.
Virology. 2014 Aug;462-463:199-206. doi: 10.1016/j.virol.2014.06.005. Epub 2014 Jul 5.
9
Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine.
Tissue Eng Part B Rev. 2015 Feb;21(1):45-54. doi: 10.1089/ten.TEB.2014.0300. Epub 2014 Jul 24.
10
The role of extracellular vesicles in the progression of neurodegenerative disease and cancer.
Trends Mol Med. 2014 Jul;20(7):368-74. doi: 10.1016/j.molmed.2014.04.003. Epub 2014 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验