Suppr超能文献

用于巴西新冠疫情动态建模的复杂网络中的社会互动层次

Social interaction layers in complex networks for the dynamical epidemic modeling of COVID-19 in Brazil.

作者信息

Scabini Leonardo F S, Ribas Lucas C, Neiva Mariane B, Junior Altamir G B, Farfán Alex J F, Bruno Odemir M

机构信息

Scientific Computing Group, São Carlos Institute of Physics, University of São Paulo (USP), PO Box 369, 13560-970, São Carlos, SP, Brazil.

Institute of Mathematics and Computer Science, University of São Paulo (USP), USP, Avenida Trabalhador são-carlense, 400, 13566-590, São Carlos, SP, Brazil.

出版信息

Physica A. 2021 Feb 15;564:125498. doi: 10.1016/j.physa.2020.125498. Epub 2020 Nov 12.

Abstract

We are currently living in a state of uncertainty due to the pandemic caused by the SARS-CoV-2 virus. There are several factors involved in the epidemic spreading, such as the individual characteristics of each city/country. The true shape of the epidemic dynamics is a large, complex system, considerably hard to predict. In this context, Complex networks are a great candidate for analyzing these systems due to their ability to tackle structural and dynamic properties. Therefore, this study presents a new approach to model the COVID-19 epidemic using a multi-layer complex network, where nodes represent people, edges are social contacts, and layers represent different social activities. The model improves the traditional SIR, and it is applied to study the Brazilian epidemic considering data up to 05/26/2020, and analyzing possible future actions and their consequences. The network is characterized using statistics of infection, death, and hospitalization time. To simulate isolation, social distancing, or precautionary measures, we remove layers and reduce social contact's intensity. Results show that even taking various optimistic assumptions, the current isolation levels in Brazil still may lead to a critical scenario for the healthcare system and a considerable death toll (average of 149,000). If all activities return to normal, the epidemic growth may suffer a steep increase, and the demand for ICU beds may surpass three times the country's capacity. This situation would surely lead to a catastrophic scenario, as our estimation reaches an average of 212,000 deaths, even considering that all cases are effectively treated. The increase of isolation (up to a lockdown) shows to be the best option to keep the situation under the healthcare system capacity, aside from ensuring a faster decrease of new case occurrences (months of difference), and a significantly smaller death toll (average of 87,000).

摘要

由于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒引发的大流行,我们目前生活在一个充满不确定性的状态中。疫情传播涉及多个因素,比如每个城市/国家的个体特征。疫情动态的真实形态是一个庞大而复杂的系统,极难预测。在这种背景下,复杂网络因其能够处理结构和动态特性,成为分析这些系统的理想选择。因此,本研究提出一种新方法,使用多层复杂网络对新冠疫情进行建模,其中节点代表人,边是社会接触,层代表不同的社会活动。该模型改进了传统的SIR模型,并应用于研究巴西疫情,考虑截至2020年5月26日的数据,并分析可能的未来行动及其后果。该网络通过感染、死亡和住院时间的统计数据来表征。为了模拟隔离、社交距离或预防措施,我们去除一些层并降低社会接触的强度。结果表明,即使采用各种乐观假设,巴西目前的隔离水平仍可能导致医疗系统面临危急情况和相当高的死亡人数(平均149,000人)。如果所有活动恢复正常,疫情增长可能会急剧上升,重症监护病房床位的需求可能会超过该国容量的三倍。这种情况肯定会导致灾难性局面,因为即使考虑到所有病例都得到有效治疗,我们的估计平均死亡人数仍达到212,000人。除了确保新病例出现的更快减少(相差数月)和显著更低的死亡人数(平均87,000人)外,增加隔离(直至封锁)似乎是将局面控制在医疗系统能力范围内的最佳选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf7b/7659518/30fe5d622479/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验