Suppr超能文献

新型冠状病毒肺炎中的血管紧张素转换酶2相互作用网络:预测心血管危险因素患者预后的生理框架

ACE2 Interaction Networks in COVID-19: A Physiological Framework for Prediction of Outcome in Patients with Cardiovascular Risk Factors.

作者信息

Wicik Zofia, Eyileten Ceren, Jakubik Daniel, Simões Sérgio N, Martins David C, Pavão Rodrigo, Siller-Matula Jolanta M, Postula Marek

机构信息

Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo Andre 09606-045, Brazil.

Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, 02-091 Warsaw, Poland.

出版信息

J Clin Med. 2020 Nov 21;9(11):3743. doi: 10.3390/jcm9113743.

Abstract

BACKGROUND

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (coronavirus disease 2019; COVID-19) is associated with adverse outcomes in patients with cardiovascular disease (CVD). The aim of the study was to characterize the interaction between SARS-CoV-2 and Angiotensin-Converting Enzyme 2 (ACE2) functional networks with a focus on CVD.

METHODS

Using the network medicine approach and publicly available datasets, we investigated ACE2 tissue expression and described ACE2 interaction networks that could be affected by SARS-CoV-2 infection in the heart, lungs and nervous system. We compared them with changes in ACE-2 networks following SARS-CoV-2 infection by analyzing public data of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). This analysis was performed using the Network by Relative Importance (NERI) algorithm, which integrates protein-protein interaction with co-expression networks. We also performed miRNA-target predictions to identify which miRNAs regulate ACE2-related networks and could play a role in the COVID19 outcome. Finally, we performed enrichment analysis for identifying the main COVID-19 risk groups.

RESULTS

We found similar ACE2 expression confidence levels in respiratory and cardiovascular systems, supporting that heart tissue is a potential target of SARS-CoV-2. Analysis of ACE2 interaction networks in infected hiPSC-CMs identified multiple hub genes with corrupted signaling which can be responsible for cardiovascular symptoms. The most affected genes were EGFR (Epidermal Growth Factor Receptor), FN1 (Fibronectin 1), TP53, HSP90AA1, and APP (Amyloid Beta Precursor Protein), while the most affected interactions were associated with MAST2 and CALM1 (Calmodulin 1). Enrichment analysis revealed multiple diseases associated with the interaction networks of ACE2, especially cancerous diseases, obesity, hypertensive disease, Alzheimer's disease, non-insulin-dependent diabetes mellitus, and congestive heart failure. Among affected ACE2-network components connected with the SARS-Cov-2 interactome, we identified AGT (Angiotensinogen), CAT (Catalase), DPP4 (Dipeptidyl Peptidase 4), CCL2 (C-C Motif Chemokine Ligand 2), TFRC (Transferrin Receptor) and CAV1 (Caveolin-1), associated with cardiovascular risk factors. We described for the first time miRNAs which were common regulators of ACE2 networks and virus-related proteins in all analyzed datasets. The top miRNAs regulating ACE2 networks were miR-27a-3p, miR-26b-5p, miR-10b-5p, miR-302c-5p, hsa-miR-587, hsa-miR-1305, hsa-miR-200b-3p, hsa-miR-124-3p, and hsa-miR-16-5p.

CONCLUSION

Our study provides a complete mechanistic framework for investigating the ACE2 network which was validated by expression data. This framework predicted risk groups, including the established ones, thus providing reliable novel information regarding the complexity of signaling pathways affected by SARS-CoV-2. It also identified miRNAs that could be used in personalized diagnosis in COVID-19.

摘要

背景

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染(2019冠状病毒病;COVID-19)与心血管疾病(CVD)患者的不良预后相关。本研究的目的是表征SARS-CoV-2与血管紧张素转换酶2(ACE2)功能网络之间的相互作用,重点关注心血管疾病。

方法

使用网络医学方法和公开可用的数据集,我们研究了ACE2的组织表达,并描述了可能受SARS-CoV-2感染影响的心脏、肺和神经系统中的ACE2相互作用网络。通过分析人诱导多能干细胞衍生心肌细胞(hiPSC-CMs)的公共数据,我们将它们与SARS-CoV-2感染后ACE-2网络的变化进行了比较。该分析使用相对重要性网络(NERI)算法进行,该算法将蛋白质-蛋白质相互作用与共表达网络整合在一起。我们还进行了miRNA靶标预测,以确定哪些miRNA调节ACE2相关网络,并可能在COVID-19结局中发挥作用。最后,我们进行了富集分析,以确定主要的COVID-19风险组。

结果

我们在呼吸和心血管系统中发现了相似的ACE2表达置信水平,支持心脏组织是SARS-CoV-2的潜在靶标。对感染的hiPSC-CMs中ACE2相互作用网络的分析确定了多个具有受损信号传导的枢纽基因,这些基因可能导致心血管症状。受影响最严重的基因是表皮生长因子受体(EGFR)、纤连蛋白1(FN1)、TP53、热休克蛋白90α家族成员1(HSP90AA1)和淀粉样前体蛋白(APP),而受影响最严重的相互作用与微管相关丝氨酸/苏氨酸激酶2(MAST2)和钙调蛋白1(CALM1)有关。富集分析揭示了与ACE2相互作用网络相关的多种疾病,尤其是癌症、肥胖症、高血压疾病、阿尔茨海默病、非胰岛素依赖型糖尿病和充血性心力衰竭。在与SARS-CoV-2相互作用组相关的受影响的ACE2网络组件中,我们确定了血管紧张素原(AGT)、过氧化氢酶(CAT)、二肽基肽酶4(DPP4)、C-C基序趋化因子配体2(CCL2)、转铁蛋白受体(TFRC)和小窝蛋白1(CAV1),它们与心血管危险因素相关。我们首次描述了在所有分析数据集中都是ACE2网络和病毒相关蛋白共同调节因子的miRNA。调节ACE2网络的顶级miRNA是miR-27a-3p、miR-26b-5p、miR-10b-5p、miR-302c-5p、hsa-miR-587、hsa-miR-1305、hsa-miR-200b-3p、hsa-miR-124-3p和hsa-miR-16-5p。

结论

我们的研究为研究ACE2网络提供了一个完整的机制框架,该框架已通过表达数据得到验证。该框架预测了风险组,包括已确定的风险组,从而提供了关于受SARS-CoV-2影响的信号通路复杂性的可靠新信息。它还鉴定了可用于COVID-19个性化诊断的miRNA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8261/7700637/65f09db06cb0/jcm-09-03743-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验