Ayan Bugra, Celik Nazmiye, Zhang Zhifeng, Zhou Kui, Kim Myoung Hwan, Banerjee Dishary, Wu Yang, Costanzo Francesco, Ozbolat Ibrahim T
Engineering Science and Mechanics Department, Penn State University, 212 Earth-Engineering Sciences Bldg., University Park, PA 16802, USA.
The Huck Institutes of the Life Sciences, Penn State University, 101 Huck Life Sciences Bldg., University Park, PA 16802, USA.
Commun Phys. 2020;3. doi: 10.1038/s42005-020-00449-4. Epub 2020 Oct 16.
Bioprinting of cellular aggregates, such as tissue spheroids, to form three-dimensional (3D) complex-shaped arrangements, has posed a major challenge due to lack of robust, reproducible and practical bioprinting techniques. Here, we demonstrate 3D aspiration-assisted freeform bioprinting of tissue spheroids by precisely positioning them in self-healing yield-stress gels, enabling the self-assembly of spheroids for fabrication of tissues. The presented approach enables the traverse of spheroids directly from the cell media to the gel and freeform positioning of the spheroids on demand. We study the underlying physical mechanism of the approach to elucidate the interactions between the aspirated spheroids and the gel's yield-stress during the transfer of spheroids from cell media to the gel. We further demonstrate the application of the proposed approach in the realization of various freeform shapes and self-assembly of human mesenchymal stem cell spheroids for the construction of cartilage and bone tissues.
由于缺乏强大、可重复且实用的生物打印技术,生物打印细胞聚集体(如组织球体)以形成三维(3D)复杂形状的排列一直是一项重大挑战。在此,我们展示了通过将组织球体精确地定位在自愈屈服应力凝胶中,实现组织球体的3D抽吸辅助自由形式生物打印,从而使球体能够自组装以制造组织。所提出的方法能够使球体直接从细胞培养基转移到凝胶中,并根据需要对球体进行自由形式定位。我们研究了该方法的潜在物理机制,以阐明在球体从细胞培养基转移到凝胶的过程中,被抽吸的球体与凝胶的屈服应力之间的相互作用。我们进一步展示了所提出的方法在实现各种自由形式形状以及人骨髓间充质干细胞球体自组装以构建软骨和骨组织方面的应用。