Department of Biomedical Engineering, Penn State University, University Park, PA, USA.
The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA.
Nat Commun. 2024 Nov 21;15(1):10083. doi: 10.1038/s41467-024-54504-7.
Tissue biofabrication mimicking organ-specific architecture and function requires physiologically-relevant cell densities. Bioprinting using spheroids can achieve this, but is limited due to the lack of practical, scalable techniques. This study presents HITS-Bio (High-throughput Integrated Tissue Fabrication System for Bioprinting), a multiarray bioprinting technique for rapidly positioning multiple spheroids simultaneously using a digitally-controlled nozzle array (DCNA). HITS-Bio achieves an unprecedented speed, ten times faster compared to existing techniques while maintaining high cell viability ( > 90%). The utility of HITS-Bio was exemplified in multiple applications, including intraoperative bioprinting with microRNA transfected human adipose-derived stem cell spheroids for calvarial bone regeneration ( ~ 30 mm) in a rat model achieving a near-complete defect closure (bone coverage area of ~ 91% in 3 weeks and ~96% in 6 weeks). Additionally, the successful fabrication of scalable cartilage constructs (1 cm) containing ~600 chondrogenic spheroids highlights its high-throughput efficiency (under 40 min per construct) and potential for repairing volumetric defects.
组织生物制造模仿器官特异性结构和功能需要生理相关的细胞密度。使用球体的生物打印可以实现这一点,但由于缺乏实用的、可扩展的技术而受到限制。本研究提出了 HITS-Bio(用于生物打印的高通量集成组织制造系统),这是一种多阵列生物打印技术,使用数字控制喷嘴阵列(DCNA)同时快速定位多个球体。HITS-Bio 实现了前所未有的速度,比现有技术快十倍,同时保持高细胞活力( > 90%)。HITS-Bio 的实用性在多个应用中得到了例证,包括在大鼠模型中进行术中生物打印,用转染 microRNA 的人脂肪来源干细胞球体进行颅骨骨再生( ~ 30mm),实现了近乎完全的缺损闭合(3 周时的骨覆盖率约为 ~ 91%,6 周时约为 96%)。此外,成功制造了包含约 600 个软骨球体的可扩展软骨构建体(1cm),突出了其高通量效率(每个构建体不到 40 分钟)和修复体积缺陷的潜力。