Suppr超能文献

使用大型开源神经影像学数据集的入门指南。

A hitchhiker's guide to working with large, open-source neuroimaging datasets.

机构信息

Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.

MD/PhD program, Yale School of Medicine, New Haven, CT, USA.

出版信息

Nat Hum Behav. 2021 Feb;5(2):185-193. doi: 10.1038/s41562-020-01005-4. Epub 2020 Dec 7.

Abstract

Large datasets that enable researchers to perform investigations with unprecedented rigor are growing increasingly common in neuroimaging. Due to the simultaneous increasing popularity of open science, these state-of-the-art datasets are more accessible than ever to researchers around the world. While analysis of these samples has pushed the field forward, they pose a new set of challenges that might cause difficulties for novice users. Here we offer practical tips for working with large datasets from the end-user's perspective. We cover all aspects of the data lifecycle: from what to consider when downloading and storing the data to tips on how to become acquainted with a dataset one did not collect and what to share when communicating results. This manuscript serves as a practical guide one can use when working with large neuroimaging datasets, thus dissolving barriers to scientific discovery.

摘要

在神经影像学中,越来越多的大型数据集使研究人员能够以前所未有的严谨性进行研究。由于开放科学的日益普及,这些最先进的数据集比以往任何时候都更容易被世界各地的研究人员获取。虽然对这些样本的分析推动了该领域的发展,但它们也带来了一系列新的挑战,可能会给新手用户带来困难。在这里,我们从终端用户的角度提供了处理大型数据集的实用技巧。我们涵盖了数据生命周期的各个方面:从下载和存储数据时需要考虑的事项,到如何熟悉自己没有收集的数据的提示,以及在交流结果时需要分享的内容。本文档可作为处理大型神经影像学数据集时的实用指南,从而消除科学发现的障碍。

相似文献

1
A hitchhiker's guide to working with large, open-source neuroimaging datasets.
Nat Hum Behav. 2021 Feb;5(2):185-193. doi: 10.1038/s41562-020-01005-4. Epub 2020 Dec 7.
2
A protocol for working with open-source neuroimaging datasets.
STAR Protoc. 2022 Jan 8;3(1):101077. doi: 10.1016/j.xpro.2021.101077. eCollection 2022 Mar 18.
3
A Hitchhiker's guide through the bio-image analysis software universe.
FEBS Lett. 2022 Oct;596(19):2472-2485. doi: 10.1002/1873-3468.14451. Epub 2022 Jul 29.
4
A Hitchhiker's Guide to Functional Magnetic Resonance Imaging.
Front Neurosci. 2016 Nov 10;10:515. doi: 10.3389/fnins.2016.00515. eCollection 2016.
6
Pain and Interoception Imaging Network (PAIN): A multimodal, multisite, brain-imaging repository for chronic somatic and visceral pain disorders.
Neuroimage. 2016 Jan 1;124(Pt B):1232-1237. doi: 10.1016/j.neuroimage.2015.04.018. Epub 2015 Apr 19.
8
The Hitchhiker's guide to Hi-C analysis: practical guidelines.
Methods. 2015 Jan 15;72:65-75. doi: 10.1016/j.ymeth.2014.10.031. Epub 2014 Nov 6.
10
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

1
DICOM datasets for reproducible neuroimaging research across manufacturers and software versions.
Sci Data. 2025 Jul 9;12(1):1168. doi: 10.1038/s41597-025-05503-w.
2
Improving predictability, reliability, and generalizability of brain-wide associations for cognitive abilities via multimodal stacking.
PNAS Nexus. 2025 Jun 24;4(6):pgaf175. doi: 10.1093/pnasnexus/pgaf175. eCollection 2025 Jun.
3
Enhanced structural brain connectivity analyses using high diffusion-weighting strengths.
Brain Struct Funct. 2025 May 14;230(5):65. doi: 10.1007/s00429-025-02916-6.
4
Mapping ADHD Heterogeneity and Biotypes through Topological Deviations in Morphometric Similarity Networks.
medRxiv. 2025 Mar 28:2025.03.27.25324802. doi: 10.1101/2025.03.27.25324802.
6
Psychiatric neuroimaging at a crossroads: Insights from psychiatric genetics.
Dev Cogn Neurosci. 2024 Dec;70:101443. doi: 10.1016/j.dcn.2024.101443. Epub 2024 Sep 23.
7
Principles of intensive human neuroimaging.
Trends Neurosci. 2024 Nov;47(11):856-864. doi: 10.1016/j.tins.2024.09.011. Epub 2024 Oct 24.
9
Exploring the late maturation of an intrinsic episodic memory network: A resting-state fMRI study.
Dev Cogn Neurosci. 2024 Dec;70:101453. doi: 10.1016/j.dcn.2024.101453. Epub 2024 Sep 26.
10
Human brain state dynamics are highly reproducible and associated with neural and behavioral features.
PLoS Biol. 2024 Sep 24;22(9):e3002808. doi: 10.1371/journal.pbio.3002808. eCollection 2024 Sep.

本文引用的文献

4
Confound modelling in UK Biobank brain imaging.
Neuroimage. 2021 Jan 1;224:117002. doi: 10.1016/j.neuroimage.2020.117002. Epub 2020 Jun 2.
5
Variability in the analysis of a single neuroimaging dataset by many teams.
Nature. 2020 Jun;582(7810):84-88. doi: 10.1038/s41586-020-2314-9. Epub 2020 May 20.
6
Harmonization of Brain Diffusion MRI: Concepts and Methods.
Front Neurosci. 2020 May 6;14:396. doi: 10.3389/fnins.2020.00396. eCollection 2020.
7
Dataset decay and the problem of sequential analyses on open datasets.
Elife. 2020 May 19;9:e53498. doi: 10.7554/eLife.53498.
8
Recommendations for Increasing the Transparency of Analysis of Preexisting Data Sets.
Adv Methods Pract Psychol Sci. 2019 Sep;2(3):214-227. doi: 10.1177/2515245919848684. Epub 2019 Jun 11.
9
Time of day is associated with paradoxical reductions in global signal fluctuation and functional connectivity.
PLoS Biol. 2020 Feb 18;18(2):e3000602. doi: 10.1371/journal.pbio.3000602. eCollection 2020 Feb.
10
Optimising network modelling methods for fMRI.
Neuroimage. 2020 May 1;211:116604. doi: 10.1016/j.neuroimage.2020.116604. Epub 2020 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验