Department of Chemistry & Biochemistry, Kent State University, Kent, Ohio 44242, United States.
Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
Bioconjug Chem. 2021 Feb 17;32(2):311-317. doi: 10.1021/acs.bioconjchem.0c00674. Epub 2021 Jan 21.
Cell motions such as migration and change in cellular morphology are essential activities for multicellular organism in response to environmental stimuli. These activities are a result of coordinated clustering/declustering of integrin molecules at the cell membrane. Here, we prepared DNA origami nanosprings to modulate cell motions by targeting the clustering of integrin molecules. Each nanospring was modified with arginyl-glycyl-aspartic acid (RGD) domains with a spacing such that when the nanospring is coiled, the RGD ligands trigger the clustering of integrin molecules, which changes cell motions. The coiling or uncoiling of the nanospring is controlled, respectively, by the formation or dissolution of an i-motif structure between neighboring piers in the DNA origami nanodevice. At slightly acidic pH (<6.5), the folding of the i-motif leads to the coiling of the nanospring, which inhibits the motion of HeLa cells. At neutrality (pH 7.4), the unfolding of the i-motif allows cells to resume mechanical movement as the nanospring becomes uncoiled. We anticipate that this pH-responsive DNA nanoassembly is valuable to inhibit the migration of metastatic cancer cells in acidic extracellular environment. Such a chemo-mechanical modulation provides a new mechanism for cells to mechanically respond to endogenous chemical cues.
细胞运动,如迁移和细胞形态的变化,是多细胞生物对外界刺激做出反应的基本活动。这些活动是细胞膜上整合素分子协调聚集/解聚的结果。在这里,我们制备了 DNA 折纸纳米弹簧,通过靶向整合素分子的聚集来调节细胞运动。每个纳米弹簧都用精氨酸-甘氨酸-天冬氨酸(RGD)结构域修饰,其间距使得当纳米弹簧卷曲时,RGD 配体触发整合素分子的聚集,从而改变细胞运动。纳米弹簧的卷曲或展开分别由 DNA 折纸纳米器件中相邻桥墩之间 i-motif 结构的形成或溶解来控制。在略酸性 pH(<6.5)下,i-motif 的折叠导致纳米弹簧的卷曲,从而抑制 HeLa 细胞的运动。在中性(pH 7.4)时,i-motif 的展开允许细胞恢复机械运动,因为纳米弹簧展开。我们预计这种 pH 响应的 DNA 纳米组装对于抑制酸性细胞外环境中转移性癌细胞的迁移是有价值的。这种化学-机械调节为细胞提供了一种机械响应内源性化学信号的新机制。