Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA.
Department of Medicine Statistics Core, David Geffen School of Medicine, 1100 Glendon Avenue, Suite 1820, Los Angeles, CA 90024, USA.
Sensors (Basel). 2021 Jan 17;21(2):616. doi: 10.3390/s21020616.
Motor dysfunction has been reported as one of the first signs of atypical development in infants at high familial risk for autism spectrum disorder (ASD) (HR infants). However, studies have shown inconsistent results regarding the nature of motor dysfunction and whether it can be predictive of later ASD diagnosis. This is likely because current standardized motor assessments may not identify subtle and specific motor impairments that precede clinically observable motor dysfunction. Quantitative measures of motor development may address these limitations by providing objective evaluation of subtle motor differences in infancy.
We used Opal wearable sensors to longitudinally evaluate full day motor activity in HR infants, and develop a measure of motion complexity. We focus on complexity of motion because optimal motion complexity is crucial to normal motor development and less complex behaviors might represent repetitive motor behaviors, a core diagnostic symptom of ASD. As proof of concept, the relationship of the motion complexity measure to developmental outcomes was examined in a small set of HR infants.
HR infants with a later diagnosis of ASD show lower motion complexity compared to those that do not. There is a stronger correlation between motion complexity and ASD outcome compared to outcomes of cognitive ability and adaptive skills.
Objective measures of motor development are needed to identify characteristics of atypical infant motor function that are sensitive and specific markers of later ASD risk. Motion complexity could be used to track early infant motor development and to discriminate HR infants that go on to develop ASD.
运动功能障碍已被报道为高家族自闭症谱系障碍(ASD)风险婴儿(HR 婴儿)中异常发育的最初迹象之一。然而,关于运动功能障碍的性质以及它是否能预测以后的 ASD 诊断,研究结果并不一致。这可能是因为目前的标准化运动评估可能无法识别在临床可观察到的运动功能障碍之前出现的微妙和特定的运动障碍。运动发育的定量测量方法可能通过提供婴儿期微妙运动差异的客观评估来解决这些局限性。
我们使用 Opal 可穿戴传感器对 HR 婴儿进行了纵向全天运动活动评估,并开发了一种运动复杂性度量。我们专注于运动的复杂性,因为最佳的运动复杂性对于正常的运动发育至关重要,而不那么复杂的行为可能代表重复性运动行为,这是 ASD 的核心诊断症状之一。作为概念验证,我们在一小部分 HR 婴儿中检查了运动复杂性测量值与发育结果之间的关系。
与没有被诊断为 ASD 的 HR 婴儿相比,后来被诊断为 ASD 的 HR 婴儿的运动复杂性较低。与认知能力和适应技能的结果相比,运动复杂性与 ASD 结果之间的相关性更强。
需要客观的运动发育测量方法来识别出与后来的 ASD 风险相关的异常婴儿运动功能的特征,这些特征是敏感和特异性的标记物。运动复杂性可以用于跟踪早期婴儿的运动发育,并区分出后来发展为 ASD 的 HR 婴儿。