Suppr超能文献

如何改进肌肉协同分析方法?

How to improve the muscle synergy analysis methodology?

机构信息

IRISSE (EA 4075), UFR SHE-STAPS Department, University of La Réunion, 117 Rue du Général Ailleret, 97430, Le Tampon, France.

出版信息

Eur J Appl Physiol. 2021 Apr;121(4):1009-1025. doi: 10.1007/s00421-021-04604-9. Epub 2021 Jan 26.

Abstract

Muscle synergy analysis is increasingly used in domains such as neurosciences, robotics, rehabilitation or sport sciences to analyze and better understand motor coordination. The analysis uses dimensionality reduction techniques to identify regularities in spatial, temporal or spatio-temporal patterns of multiple muscle activation. Recent studies have pointed out variability in outcomes associated with the different methodological options available and there was a need to clarify several aspects of the analysis methodology. While synergy analysis appears to be a robust technique, it remain a statistical tool and is, therefore, sensitive to the amount and quality of input data (EMGs). In particular, attention should be paid to EMG amplitude normalization, baseline noise removal or EMG filtering which may diminish or increase the signal-to-noise ratio of the EMG signal and could have major effects on synergy estimates. In order to robustly identify synergies, experiments should be performed so that the groups of muscles that would potentially form a synergy are activated with a sufficient level of activity, ensuring that the synergy subspace is fully explored. The concurrent use of various synergy formulations-spatial, temporal and spatio-temporal synergies- should be encouraged. The number of synergies represents either the dimension of the spatial structure or the number of independent temporal patterns, and we observed that these two aspects are often mixed in the analysis. To select a number, criteria based on noise estimates, reliability of analysis results, or functional outcomes of the synergies provide interesting substitutes to criteria solely based on variance thresholds.

摘要

肌肉协同分析越来越多地应用于神经科学、机器人技术、康复或运动科学等领域,以分析和更好地理解运动协调。该分析使用降维技术来识别多个肌肉激活的空间、时间或时空模式的规律。最近的研究指出,与可用的不同方法选择相关的结果存在可变性,因此需要澄清分析方法的几个方面。虽然协同分析似乎是一种稳健的技术,但它仍然是一种统计工具,因此对输入数据(肌电图)的数量和质量敏感。特别是,应注意肌电图幅度归一化、基线噪声消除或肌电图滤波,这些可能会降低或增加肌电图信号的信噪比,并对协同估计产生重大影响。为了稳健地识别协同作用,应进行实验,以使可能形成协同作用的肌肉群以足够的活动水平激活,以确保协同子空间得到充分探索。应鼓励同时使用各种协同公式 - 空间、时间和时空协同作用。协同的数量表示空间结构的维度或独立时间模式的数量,我们观察到这两个方面在分析中经常混合在一起。为了选择数量,可以基于噪声估计、分析结果的可靠性或协同的功能结果的标准来代替仅基于方差阈值的标准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验