Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA.
Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM, USA.
Nat Biomed Eng. 2021 Jun;5(6):546-554. doi: 10.1038/s41551-020-00667-9. Epub 2021 Feb 8.
Machine learning promises to assist physicians with predictions of mortality and of other future clinical events by learning complex patterns from historical data, such as longitudinal electronic health records. Here we show that a convolutional neural network trained on raw pixel data in 812,278 echocardiographic videos from 34,362 individuals provides superior predictions of one-year all-cause mortality. The model's predictions outperformed the widely used pooled cohort equations, the Seattle Heart Failure score (measured in an independent dataset of 2,404 patients with heart failure who underwent 3,384 echocardiograms), and a machine learning model involving 58 human-derived variables from echocardiograms and 100 clinical variables derived from electronic health records. We also show that cardiologists assisted by the model substantially improved the sensitivity of their predictions of one-year all-cause mortality by 13% while maintaining prediction specificity. Large unstructured datasets may enable deep learning to improve a wide range of clinical prediction models.
机器学习有望通过从历史数据(如纵向电子健康记录)中学习复杂模式,帮助医生预测死亡率和其他未来的临床事件。在这里,我们证明,在 34362 个人的 812278 个超声心动图视频的原始像素数据上训练的卷积神经网络可以更好地预测一年的全因死亡率。该模型的预测结果优于广泛使用的 pooled cohort equations、西雅图心力衰竭评分(在一个独立的心力衰竭患者数据集 2404 例中进行,这些患者接受了 3384 次超声心动图检查),以及一个涉及 58 个人工变量和 100 个来自电子健康记录的临床变量的机器学习模型。我们还表明,该模型辅助的心脏病专家将其对一年全因死亡率预测的灵敏度提高了 13%,同时保持了预测的特异性。大型非结构化数据集可能使深度学习能够改善广泛的临床预测模型。