Suppr超能文献

经过编辑的 CCR5 基因修饰的 CD4+ T 细胞增强了 HIV 特异性免疫,从而实现了 HIV 复制后反弹的控制。

CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication.

机构信息

Department of Medicine.

Department of Microbiology and Center for Cellular Immunotherapies.

出版信息

J Clin Invest. 2021 Apr 1;131(7). doi: 10.1172/JCI144486.

Abstract

BackgroundWe conducted a phase I clinical trial that infused CCR5 gene-edited CD4+ T cells to determine how these T cells can better enable HIV cure strategies.MethodsThe aim of trial was to develop RNA-based approaches to deliver zinc finger nuclease (ZFN), evaluate the effect of CCR5 gene-edited CD4+ T cells on the HIV-specific T cell response, test the ability of infused CCR5 gene-edited T cells to delay viral rebound during analytical treatment interruption, and determine whether individuals heterozygous for CCR5 Δ32 preferentially benefit. We enrolled 14 individuals living with HIV whose viral load was well controlled by antiretroviral therapy (ART). We measured the time to viral rebound after ART withdrawal, the persistence of CCR5-edited CD4+ T cells, and whether infusion of 10 billion CCR5-edited CD4+ T cells augmented the HIV-specific immune response.ResultsInfusion of the CD4+ T cells was well tolerated, with no serious adverse events. We observed a modest delay in the time to viral rebound relative to historical controls; however, 3 of the 14 individuals, 2 of whom were heterozygous for CCR5 Δ32, showed post-viral rebound control of viremia, before ultimately losing control of viral replication. Interestingly, only these individuals had substantial restoration of HIV-specific CD8+ T cell responses. We observed immune escape for 1 of these reinvigorated responses at viral recrudescence, illustrating a direct link between viral control and enhanced CD8+ T cell responses.ConclusionThese findings demonstrate how CCR5 gene-edited CD4+ T cell infusion could aid HIV cure strategies by augmenting preexisting HIV-specific immune responses.REGISTRATIONClinicalTrials.gov NCT02388594.FundingNIH funding (R01AI104400, UM1AI126620, U19AI149680, T32AI007632) was provided by the National Institute of Allergy and Infectious Diseases (NIAID), the National Institute on Drug Abuse (NIDA), the National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS). Sangamo Therapeutics also provided funding for these studies.

摘要

背景

我们开展了一项 I 期临床试验,输注 CCR5 基因编辑的 CD4+T 细胞,以确定这些 T 细胞如何更好地实现 HIV 治愈策略。

方法

试验的目的是开发基于 RNA 的方法来递送锌指核酸酶(ZFN),评估 CCR5 基因编辑的 CD4+T 细胞对 HIV 特异性 T 细胞反应的影响,测试输注的 CCR5 基因编辑 T 细胞在分析性治疗中断期间延迟病毒反弹的能力,并确定 CCR5Δ32 杂合子个体是否优先受益。我们招募了 14 名 HIV 感染者,他们的病毒载量通过抗逆转录病毒治疗(ART)得到很好的控制。我们测量了 ART 停药后病毒反弹的时间、CCR5 编辑的 CD4+T 细胞的持续存在,以及输注 100 亿个 CCR5 编辑的 CD4+T 细胞是否增强了 HIV 特异性免疫反应。

结果

CD4+T 细胞输注耐受良好,无严重不良事件。与历史对照相比,我们观察到病毒反弹时间略有延迟;然而,14 名个体中有 3 名,其中 2 名是 CCR5Δ32 的杂合子,在最终失去病毒复制控制之前,表现出病毒血症的反弹后控制。有趣的是,只有这些个体的 HIV 特异性 CD8+T 细胞反应得到了实质性的恢复。我们在病毒复发时观察到其中一个重新激活的反应出现免疫逃逸,这直接表明病毒控制与增强的 CD8+T 细胞反应之间存在关联。

结论

这些发现表明,CCR5 基因编辑的 CD4+T 细胞输注可以通过增强预先存在的 HIV 特异性免疫反应来辅助 HIV 治愈策略。

登记

ClinicalTrials.gov NCT02388594。

资金

美国国立卫生研究院(NIH)资助(R01AI104400、UM1AI126620、U19AI149680、T32AI007632)由国家过敏和传染病研究所(NIAID)、国家药物滥用研究所(NIDA)、国家心理健康研究所(NIMH)和国家神经疾病和中风研究所(NINDS)提供。Sangamo Therapeutics 也为这些研究提供了资金。

相似文献

2
Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV.
N Engl J Med. 2014 Mar 6;370(10):901-10. doi: 10.1056/NEJMoa1300662.
3
Adoptive lymphocyte transfer to an HIV-infected progressor from an elite controller.
JCI Insight. 2019 Sep 19;4(18):130664. doi: 10.1172/jci.insight.130664.
4
Harnessing CD8 T Cells Under HIV Antiretroviral Therapy.
Front Immunol. 2019 Feb 26;10:291. doi: 10.3389/fimmu.2019.00291. eCollection 2019.
5
Decreased HIV type 1 transcription in CCR5-Δ32 heterozygotes during suppressive antiretroviral therapy.
J Infect Dis. 2014 Dec 1;210(11):1838-43. doi: 10.1093/infdis/jiu338. Epub 2014 Jun 16.
6
Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation.
N Engl J Med. 2009 Feb 12;360(7):692-8. doi: 10.1056/NEJMoa0802905.
7
Mechanisms of Abrupt Loss of Virus Control in a Cohort of Previous HIV Controllers.
J Virol. 2019 Feb 5;93(4). doi: 10.1128/JVI.01436-18. Print 2019 Feb 15.
8
9
Stimulation of HIV-specific cellular immunity by structured treatment interruption fails to enhance viral control in chronic HIV infection.
Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13747-52. doi: 10.1073/pnas.202372199. Epub 2002 Oct 7.

引用本文的文献

1
Advancing gene editing therapeutics: Clinical trials and innovative delivery systems across diverse diseases.
Mol Ther Nucleic Acids. 2025 Aug 5;36(3):102666. doi: 10.1016/j.omtn.2025.102666. eCollection 2025 Sep 9.
2
CRISPR/Cas9 for achieving postintervention HIV control.
Curr Opin HIV AIDS. 2025 Sep 1;20(5):432-440. doi: 10.1097/COH.0000000000000963. Epub 2025 Jul 18.
3
CCR5 gene editing and HIV immunotherapy: current understandings, challenges, and future directions.
Front Immunol. 2025 Jun 18;16:1590690. doi: 10.3389/fimmu.2025.1590690. eCollection 2025.
4
Unlocking the potential: advancements and applications of gene therapy in severe disorders.
Ann Med. 2025 Dec;57(1):2516697. doi: 10.1080/07853890.2025.2516697. Epub 2025 Jun 17.
6
Current trends in gene therapy to treat inherited disorders of the brain.
Mol Ther. 2025 May 7;33(5):1988-2014. doi: 10.1016/j.ymthe.2025.03.057. Epub 2025 Apr 2.
7
CRISPR-Cas9-driven antigen conversion of clinically relevant blood group systems.
Hum Mol Genet. 2025 Jun 4;34(12):1001-1008. doi: 10.1093/hmg/ddaf040.
8
HIV controllers: hope for a functional cure.
Front Immunol. 2025 Feb 25;16:1540932. doi: 10.3389/fimmu.2025.1540932. eCollection 2025.
9
Excision of HIV-1 Provirus in Human Primary Cells with Nanocapsuled TALEN Proteins.
ACS Appl Bio Mater. 2025 Feb 17;8(2):1227-1239. doi: 10.1021/acsabm.4c01544. Epub 2025 Jan 31.

本文引用的文献

1
Challenges and Opportunities of Using Adoptive T-Cell Therapy as Part of an HIV Cure Strategy.
J Infect Dis. 2021 Feb 15;223(12 Suppl 2):38-45. doi: 10.1093/infdis/jiaa223.
2
HIV-Resistant and HIV-Specific CAR-Modified CD4 T Cells Mitigate HIV Disease Progression and Confer CD4 T Cell Help In Vivo.
Mol Ther. 2020 Jul 8;28(7):1585-1599. doi: 10.1016/j.ymthe.2020.05.012. Epub 2020 May 15.
3
Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data.
J Proteome Res. 2020 Jun 5;19(6):2304-2315. doi: 10.1021/acs.jproteome.9b00874. Epub 2020 Apr 30.
5
Neoantigen Dissimilarity to the Self-Proteome Predicts Immunogenicity and Response to Immune Checkpoint Blockade.
Cell Syst. 2019 Oct 23;9(4):375-382.e4. doi: 10.1016/j.cels.2019.08.009. Epub 2019 Oct 9.
6
CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia.
N Engl J Med. 2019 Sep 26;381(13):1240-1247. doi: 10.1056/NEJMoa1817426. Epub 2019 Sep 11.
7
Predictions of time to HIV viral rebound following ART suspension that incorporate personal biomarkers.
PLoS Comput Biol. 2019 Jul 24;15(7):e1007229. doi: 10.1371/journal.pcbi.1007229. eCollection 2019 Jul.
9
Diversifying the structure of zinc finger nucleases for high-precision genome editing.
Nat Commun. 2019 Mar 8;10(1):1133. doi: 10.1038/s41467-019-08867-x.
10
HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation.
Nature. 2019 Apr;568(7751):244-248. doi: 10.1038/s41586-019-1027-4. Epub 2019 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验