Suppr超能文献

一项利用磁共振成像、高级分析和机器学习对精神分裂症进行的形态学研究。

A morphological study of schizophrenia with magnetic resonance imaging, advanced analytics, and machine learning.

作者信息

Levman Jacob, Jennings Maxwell, Rouse Ethan, Berger Derek, Kabaria Priya, Nangaku Masahito, Gondra Iker, Takahashi Emi

机构信息

Department of Computer Science, St. Francis Xavier University, Antigonish, NS, Canada.

Center for Clinical Research, Nova Scotia Health Authority - Research, Innovation and Discovery, Halifax, NS, Canada.

出版信息

Front Neurosci. 2022 Aug 15;16:926426. doi: 10.3389/fnins.2022.926426. eCollection 2022.

Abstract

We have performed a morphological analysis of patients with schizophrenia and compared them with healthy controls. Our analysis includes the use of publicly available automated extraction tools to assess regional cortical thickness (inclusive of within region cortical thickness variability) from structural magnetic resonance imaging (MRI), to characterize group-wise abnormalities associated with schizophrenia based on a publicly available dataset. We have also performed a correlation analysis between the automatically extracted biomarkers and a variety of patient clinical variables available. Finally, we also present the results of a machine learning analysis. Results demonstrate regional cortical thickness abnormalities in schizophrenia. We observed a correlation (rho = 0.474) between patients' depression and the average cortical thickness of the right medial orbitofrontal cortex. Our leading machine learning technology evaluated was the support vector machine with stepwise feature selection, yielding a sensitivity of 92% and a specificity of 74%, based on regional brain measurements, including from the insula, superior frontal, caudate, calcarine sulcus, gyrus rectus, and rostral middle frontal regions. These results imply that advanced analytic techniques combining MRI with automated biomarker extraction can be helpful in characterizing patients with schizophrenia.

摘要

我们对精神分裂症患者进行了形态学分析,并将他们与健康对照者进行了比较。我们的分析包括使用公开可用的自动提取工具,从结构磁共振成像(MRI)评估区域皮质厚度(包括区域内皮质厚度变异性),以基于公开可用数据集表征与精神分裂症相关的组间异常。我们还对自动提取的生物标志物与各种可用的患者临床变量进行了相关性分析。最后,我们还展示了机器学习分析的结果。结果表明精神分裂症患者存在区域皮质厚度异常。我们观察到患者的抑郁与右侧内侧眶额皮质的平均皮质厚度之间存在相关性(rho = 0.474)。我们评估的主要机器学习技术是具有逐步特征选择的支持向量机,基于包括脑岛、额上回、尾状核、距状沟、直回和额中回前部区域在内的区域脑测量,其灵敏度为92%,特异性为74%。这些结果表明,将MRI与自动生物标志物提取相结合的先进分析技术有助于对精神分裂症患者进行特征描述。

相似文献

7
Abnormal cortical thickness in heroin-dependent individuals.海洛因依赖者皮质厚度异常。
Neuroimage. 2014 Mar;88:295-307. doi: 10.1016/j.neuroimage.2013.10.021. Epub 2013 Oct 17.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验