Suppr超能文献

两种具有功能冗余性的 FK506 结合蛋白调控多药耐药基因表达并控制唑类抗真菌药物耐药性。

Two Functionally Redundant FK506-Binding Proteins Regulate Multidrug Resistance Gene Expression and Govern Azole Antifungal Resistance.

机构信息

Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.

Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India.

出版信息

Antimicrob Agents Chemother. 2021 May 18;65(6). doi: 10.1128/AAC.02415-20.

Abstract

Increasing resistance to antifungal therapy is an impediment to the effective treatment of fungal infections. is an opportunistic human fungal pathogen that is inherently less susceptible to cost-effective azole antifungals. Gain-of-function mutations in the Zn-finger pleiotropic drug resistance transcriptional activator-encoding gene are the most prevalent causes of azole resistance in clinical settings. is also transcriptionally activated upon azole exposure; however, factors governing gene expression are not yet fully understood. Here, we have uncovered a novel role for two FK506-binding proteins, CgFpr3 and CgFpr4, in the regulation of the regulon. We show that CgFpr3 and CgFpr4 possess a peptidyl-prolyl isomerase domain and act redundantly to control expression, as a ΔΔ mutant displayed elevated expression of the gene along with overexpression of its target genes, , , and , which code for ATP-binding cassette multidrug transporters. Furthermore, CgFpr3 and CgFpr4 are required for the maintenance of histone H3 and H4 protein levels, and fluconazole exposure leads to elevated H3 and H4 protein levels. Consistent with the role of histone proteins in azole resistance, disruption of genes coding for the histone demethylase CgRph1 and the histone H3K36-specific methyltransferase CgSet2 leads to increased and decreased susceptibility to fluconazole, respectively, with the Δ mutant displaying significantly lower basal expression levels of the and genes. These data underscore a hitherto unknown role of histone methylation in modulating the most common azole antifungal resistance mechanism. Altogether, our findings establish a link between CgFpr-mediated histone homeostasis and gene expression and implicate CgFpr in the virulence of .

摘要

抗真菌治疗的耐药性增加是真菌感染有效治疗的障碍。 是一种机会性人类真菌病原体,对具有成本效益的唑类抗真菌药物固有地不太敏感。Zn 指多功能药物抗性转录激活因子编码基因中的功能获得性突变是临床唑类耐药最常见的原因。 在唑类药物暴露后也会被转录激活;然而,调控 基因表达的因素尚未完全理解。在这里,我们发现了两个 FK506 结合蛋白 CgFpr3 和 CgFpr4 在 调控子中的新作用。我们表明 CgFpr3 和 CgFpr4 具有肽基脯氨酰顺反异构酶结构域,并冗余地控制 表达,因为 ΔΔ 突变体显示出 基因的表达升高,以及其靶基因 、 、 和 的过度表达,编码 ATP 结合盒多药转运蛋白。此外,CgFpr3 和 CgFpr4 是维持组蛋白 H3 和 H4 蛋白水平所必需的,氟康唑暴露导致 H3 和 H4 蛋白水平升高。与组蛋白蛋白在唑类耐药中的作用一致,组蛋白去甲基酶 CgRph1 和组蛋白 H3K36 特异性甲基转移酶 CgSet2 的编码基因的破坏分别导致对氟康唑的敏感性增加和降低,Δ 突变体显示出 基因和 基因的基础表达水平显著降低。这些数据强调了组蛋白甲基化在调节最常见的唑类抗真菌耐药机制中的未知作用。总之,我们的发现确立了 CgFpr 介导的组蛋白动态平衡与 基因表达之间的联系,并暗示 CgFpr 参与了 的毒力。

相似文献

2
The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata.
Mol Microbiol. 2008 Apr;68(1):186-201. doi: 10.1111/j.1365-2958.2008.06143.x. Epub 2008 Feb 26.
3
Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata.
PLoS One. 2011 Mar 9;6(3):e17589. doi: 10.1371/journal.pone.0017589.
4
Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence.
PLoS Pathog. 2009 Jan;5(1):e1000268. doi: 10.1371/journal.ppat.1000268. Epub 2009 Jan 16.
5
7
Expression Patterns of ABC Transporter Genes in Fluconazole-Resistant Candida glabrata.
Mycopathologia. 2017 Apr;182(3-4):273-284. doi: 10.1007/s11046-016-0074-8. Epub 2016 Oct 15.
8
Mutations in the CgPDR1 and CgERG11 genes in azole-resistant Candida glabrata clinical isolates from Slovakia.
Int J Antimicrob Agents. 2009 Jun;33(6):574-8. doi: 10.1016/j.ijantimicag.2008.11.011. Epub 2009 Feb 3.
9
Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates.
Antimicrob Agents Chemother. 2010 Aug;54(8):3308-17. doi: 10.1128/AAC.00535-10. Epub 2010 Jun 14.
10
Missense mutation in CgPDR1 regulator associated with azole-resistant Candida glabrata recovered from Thai oral candidiasis patients.
J Glob Antimicrob Resist. 2019 Jun;17:221-226. doi: 10.1016/j.jgar.2019.01.006. Epub 2019 Jan 15.

引用本文的文献

3
Promising Role of Fruitless Wolfberry Bud Tea in Combating Resistance.
Pathogens. 2025 Apr 4;14(4):351. doi: 10.3390/pathogens14040351.
4
Core histones govern echinocandin susceptibility in .
Microbiol Spectr. 2025 Jun 3;13(6):e0239924. doi: 10.1128/spectrum.02399-24. Epub 2025 Apr 30.
5
Proteomic characterization of clinical Candida glabrata isolates with varying degrees of virulence and resistance to fluconazole.
PLoS One. 2025 Mar 25;20(3):e0320484. doi: 10.1371/journal.pone.0320484. eCollection 2025.
6
Genetic engineering in diatoms: advances and prospects.
Plant J. 2025 Mar;121(6):e70102. doi: 10.1111/tpj.70102.
9
Molecular mechanisms governing antifungal drug resistance.
NPJ Antimicrob Resist. 2023;1(1):5. doi: 10.1038/s44259-023-00007-2. Epub 2023 Jul 17.
10
Modulators of Candida albicans Membrane Drug Transporters: A Lucrative Portfolio for the Development of Effective Antifungals.
Mol Biotechnol. 2024 May;66(5):960-974. doi: 10.1007/s12033-023-01017-1. Epub 2024 Jan 11.

本文引用的文献

1
The Quiet and Underappreciated Rise of Drug-Resistant Invasive Fungal Pathogens.
J Fungi (Basel). 2020 Aug 18;6(3):138. doi: 10.3390/jof6030138.
2
Chromatin Structure and Drug Resistance in spp.
J Fungi (Basel). 2020 Jul 30;6(3):121. doi: 10.3390/jof6030121.
3
Histone H4 dosage modulates DNA damage response in the pathogenic yeast Candida glabrata via homologous recombination pathway.
PLoS Genet. 2020 Mar 5;16(3):e1008620. doi: 10.1371/journal.pgen.1008620. eCollection 2020 Mar.
4
The Impact of One Carbon Metabolism on Histone Methylation.
Front Genet. 2019 Aug 28;10:764. doi: 10.3389/fgene.2019.00764. eCollection 2019.
6
Histone Methylation and Memory of Environmental Stress.
Cells. 2019 Apr 10;8(4):339. doi: 10.3390/cells8040339.
7
Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Species From 1997-2016.
Open Forum Infect Dis. 2019 Mar 15;6(Suppl 1):S79-S94. doi: 10.1093/ofid/ofy358. eCollection 2019 Mar.
8
Yeast epigenetics: the inheritance of histone modification states.
Biosci Rep. 2019 May 7;39(5). doi: 10.1042/BSR20182006. Print 2019 May 31.
9
Gene Point Mutations Are Not Antifungal Resistance Markers in .
Antimicrob Agents Chemother. 2018 Dec 21;63(1). doi: 10.1128/AAC.01876-18. Print 2019 Jan.
10
A Transcriptomics Approach To Unveiling the Mechanisms of Evolution towards Fluconazole Resistance of a Clinical Isolate.
Antimicrob Agents Chemother. 2018 Dec 21;63(1). doi: 10.1128/AAC.00995-18. Print 2019 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验