Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Antimicrob Agents Chemother. 2021 May 18;65(6). doi: 10.1128/AAC.02415-20.
Increasing resistance to antifungal therapy is an impediment to the effective treatment of fungal infections. is an opportunistic human fungal pathogen that is inherently less susceptible to cost-effective azole antifungals. Gain-of-function mutations in the Zn-finger pleiotropic drug resistance transcriptional activator-encoding gene are the most prevalent causes of azole resistance in clinical settings. is also transcriptionally activated upon azole exposure; however, factors governing gene expression are not yet fully understood. Here, we have uncovered a novel role for two FK506-binding proteins, CgFpr3 and CgFpr4, in the regulation of the regulon. We show that CgFpr3 and CgFpr4 possess a peptidyl-prolyl isomerase domain and act redundantly to control expression, as a ΔΔ mutant displayed elevated expression of the gene along with overexpression of its target genes, , , and , which code for ATP-binding cassette multidrug transporters. Furthermore, CgFpr3 and CgFpr4 are required for the maintenance of histone H3 and H4 protein levels, and fluconazole exposure leads to elevated H3 and H4 protein levels. Consistent with the role of histone proteins in azole resistance, disruption of genes coding for the histone demethylase CgRph1 and the histone H3K36-specific methyltransferase CgSet2 leads to increased and decreased susceptibility to fluconazole, respectively, with the Δ mutant displaying significantly lower basal expression levels of the and genes. These data underscore a hitherto unknown role of histone methylation in modulating the most common azole antifungal resistance mechanism. Altogether, our findings establish a link between CgFpr-mediated histone homeostasis and gene expression and implicate CgFpr in the virulence of .
抗真菌治疗的耐药性增加是真菌感染有效治疗的障碍。 是一种机会性人类真菌病原体,对具有成本效益的唑类抗真菌药物固有地不太敏感。Zn 指多功能药物抗性转录激活因子编码基因中的功能获得性突变是临床唑类耐药最常见的原因。 在唑类药物暴露后也会被转录激活;然而,调控 基因表达的因素尚未完全理解。在这里,我们发现了两个 FK506 结合蛋白 CgFpr3 和 CgFpr4 在 调控子中的新作用。我们表明 CgFpr3 和 CgFpr4 具有肽基脯氨酰顺反异构酶结构域,并冗余地控制 表达,因为 ΔΔ 突变体显示出 基因的表达升高,以及其靶基因 、 、 和 的过度表达,编码 ATP 结合盒多药转运蛋白。此外,CgFpr3 和 CgFpr4 是维持组蛋白 H3 和 H4 蛋白水平所必需的,氟康唑暴露导致 H3 和 H4 蛋白水平升高。与组蛋白蛋白在唑类耐药中的作用一致,组蛋白去甲基酶 CgRph1 和组蛋白 H3K36 特异性甲基转移酶 CgSet2 的编码基因的破坏分别导致对氟康唑的敏感性增加和降低,Δ 突变体显示出 基因和 基因的基础表达水平显著降低。这些数据强调了组蛋白甲基化在调节最常见的唑类抗真菌耐药机制中的未知作用。总之,我们的发现确立了 CgFpr 介导的组蛋白动态平衡与 基因表达之间的联系,并暗示 CgFpr 参与了 的毒力。