Wang Paul Y, Sapra Sandalika, George Vivek Kurien, Silva Gabriel A
Center for Engineered Natural Intelligence, University of California San Diego, La Jolla, CA, United States.
Department of Physics, University of California San Diego, La Jolla, CA, United States.
Front Artif Intell. 2021 Feb 23;4:618372. doi: 10.3389/frai.2021.618372. eCollection 2021.
Although a number of studies have explored deep learning in neuroscience, the application of these algorithms to neural systems on a microscopic scale, i.e. parameters relevant to lower scales of organization, remains relatively novel. Motivated by advances in whole-brain imaging, we examined the performance of deep learning models on microscopic neural dynamics and resulting emergent behaviors using calcium imaging data from the nematode . As one of the only species for which neuron-level dynamics can be recorded, serves as the ideal organism for designing and testing models bridging recent advances in deep learning and established concepts in neuroscience. We show that neural networks perform remarkably well on both neuron-level dynamics prediction and behavioral state classification. In addition, we compared the performance of structure agnostic neural networks and graph neural networks to investigate if graph structure can be exploited as a favourable inductive bias. To perform this experiment, we designed a graph neural network which explicitly infers relations between neurons from neural activity and leverages the inferred graph structure during computations. In our experiments, we found that graph neural networks generally outperformed structure agnostic models and excel in generalization on unseen organisms, implying a potential path to generalizable machine learning in neuroscience.
尽管已有多项研究探索了深度学习在神经科学中的应用,但将这些算法应用于微观尺度的神经系统,即与较低组织层次相关的参数,仍然相对新颖。受全脑成像进展的启发,我们使用线虫的钙成像数据,研究了深度学习模型在微观神经动力学以及由此产生的涌现行为方面的性能。作为唯一能够记录神经元水平动态的物种之一,线虫是设计和测试模型的理想生物体,这些模型能够衔接深度学习的最新进展和神经科学中的既定概念。我们表明,神经网络在神经元水平动态预测和行为状态分类方面都表现出色。此外,我们比较了与结构无关的神经网络和图神经网络的性能,以研究是否可以利用图结构作为一种有利的归纳偏差。为了进行这个实验,我们设计了一种图神经网络,它可以从神经活动中明确推断神经元之间的关系,并在计算过程中利用推断出的图结构。在我们的实验中,我们发现图神经网络通常优于与结构无关的模型,并且在对未见过的生物体进行泛化方面表现出色,这意味着在神经科学中实现可泛化机器学习的一条潜在途径。