do Monte Felipe A, Ahuja Neelam, Awad Kamal R, Pan Zui, Young Simon, Kim Harry Kw, Aswath Pranesh, Brotto Marco, Varanasi Venu G
Department of Bioengineering University of Texas at Arlington Arlington TX USA.
Center for Excellence in Hip Disorders Texas Scottish Rite Hospital Dallas TX USA.
JBMR Plus. 2021 Mar 18;5(4):e10425. doi: 10.1002/jbm4.10425. eCollection 2021 Apr.
Critical-sized bone defects are challenging to heal because of the sudden and large volume of lost bone. Fixative plates are often used to stabilize defects, yet oxidative stress and delayed angiogenesis are contributing factors to poor biocompatibility and delayed bone healing. This study tests the angiogenic and antioxidant properties of amorphous silicon oxynitrophosphide (SiONPx) nanoscale-coating material on endothelial cells to regenerate vascular tissue in vitro and in bone defects. in vitro studies evaluate the effect of silicon oxynitride (SiONx) and two different SiONPx compositions on human endothelial cells exposed to ROS (eg, hydrogen peroxide) that simulates oxidative stress conditions. in vivo studies using adult male Sprague Dawley rats (approximately 450 g) were performed to compare a bare plate, a SiONPx-coated implant plate, and a sham control group using a rat standard-sized calvarial defect. Results from this study showed that plates coated with SiONPx significantly reduced cell death, and enhanced vascular tubule formation and matrix deposition by upregulating angiogenic and antioxidant expression (eg, vascular endothelial growth factor A, angiopoetin-1, superoxide dismutase 1, nuclear factor erythroid 2-related factor 2, and catalase 1). Moreover, endothelial cell markers (CD31) showed a significant tubular structure in the SiONPx coating group compared with an empty and uncoated plate group. This reveals that atomic doping of phosphate into the nanoscale coating of SiONx produced markedly elevated levels of antioxidant and angiogenic markers that enhance vascular tissue regeneration. This study found that SiONPx or SiONx nanoscale-coated materials enhance antioxidant expression, angiogenic marker expression, and reduce ROS levels needed for accelerating vascular tissue regeneration. These results further suggest that SiONPx nanoscale coating could be a promising candidate for titanium plate for rapid and enhanced cranial bone-defect healing. © 2020 The Authors. published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
临界尺寸的骨缺损由于骨量的突然大量丢失而难以愈合。固定钢板常用于稳定缺损,但氧化应激和血管生成延迟是导致生物相容性差和骨愈合延迟的因素。本研究测试了非晶氮氧化磷硅(SiONPx)纳米涂层材料在内皮细胞上的血管生成和抗氧化特性,以在体外和骨缺损中再生血管组织。体外研究评估了氮氧化硅(SiONx)和两种不同的SiONPx组成对暴露于模拟氧化应激条件的活性氧(如过氧化氢)的人内皮细胞的影响。使用成年雄性Sprague Dawley大鼠(约450 g)进行体内研究,以比较裸钢板、SiONPx涂层植入钢板和假手术对照组,采用大鼠标准尺寸的颅骨缺损。本研究结果表明,涂有SiONPx的钢板显著降低细胞死亡,并通过上调血管生成和抗氧化表达(如血管内皮生长因子A、血管生成素-1、超氧化物歧化酶1、核因子红细胞2相关因子2和过氧化氢酶1)增强血管小管形成和基质沉积。此外,与空板和未涂层板组相比,内皮细胞标志物(CD31)在SiONPx涂层组中显示出明显的管状结构。这表明将磷酸盐原子掺杂到SiONx的纳米涂层中可显著提高抗氧化和血管生成标志物的水平,从而促进血管组织再生。本研究发现,SiONPx或SiONx纳米涂层材料可增强抗氧化表达、血管生成标志物表达,并降低加速血管组织再生所需的活性氧水平。这些结果进一步表明,SiONPx纳米涂层可能是用于快速增强颅骨缺损愈合的钛板的有前途的候选材料。©2020作者。由Wiley Periodicals LLC代表美国骨与矿物质研究学会出版。