Zhao Runchen, Cui Siqi, Ge Zhuoxu, Zhang Yuqi, Bera Kaustav, Zhu Lily, Sun Sean X, Konstantopoulos Konstantinos
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
Sci Adv. 2021 Apr 23;7(17). doi: 10.1126/sciadv.abg4934. Print 2021 Apr.
Cells penetrating into confinement undergo mesenchymal-to-amoeboid transition. The topographical features of the microenvironment expose cells to different hydraulic resistance levels. How cells respond to hydraulic resistance is unknown. We show that the cell phenotype shifts from amoeboid to mesenchymal upon increasing resistance. By combining automated morphological tracking and wavelet analysis along with fluorescence recovery after photobleaching (FRAP), we found an oscillatory phenotypic transition that cycles from blebbing to short, medium, and long actin network formation, and back to blebbing. Elevated hydraulic resistance promotes focal adhesion maturation and long actin filaments, thereby reducing the period required for amoeboid-to-mesenchymal transition. The period becomes independent of resistance upon blocking the mechanosensor TRPM7. Mathematical modeling links intracellular calcium oscillations with actomyosin turnover and force generation and recapitulates experimental data. We identify hydraulic resistance as a critical physical cue controlling cell phenotype and present an approach for connecting fluorescent signal fluctuations to morphological oscillations.
侵入受限环境的细胞会经历间充质到阿米巴样转变。微环境的地形特征使细胞暴露于不同水平的水力阻力。细胞如何响应水力阻力尚不清楚。我们发现,随着阻力增加,细胞表型会从阿米巴样转变为间充质样。通过结合自动形态跟踪、小波分析以及光漂白后荧光恢复(FRAP)技术,我们发现了一种振荡性表型转变,该转变从气泡形成循环到短、中、长肌动蛋白网络形成,然后再回到气泡形成。升高的水力阻力促进粘着斑成熟和长肌动蛋白丝的形成,从而缩短了从阿米巴样到间充质样转变所需的时间。在阻断机械传感器TRPM7后,该时间变得与阻力无关。数学建模将细胞内钙振荡与肌动球蛋白周转及力的产生联系起来,并概括了实验数据。我们确定水力阻力是控制细胞表型的关键物理线索,并提出了一种将荧光信号波动与形态振荡联系起来的方法。