Suppr超能文献

新冠病毒病年龄组和性别分布的全球时间模式

Global Temporal Patterns of Age Group and Sex Distributions of COVID-19.

作者信息

Leong Russell, Lee Tin-Suet Joan, Chen Zejia, Zhang Chelsea, Xu Jianping

机构信息

Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada.

Department of Biology and Institute of Infectious Diseases Research, McMaster University, Hamilton, ON L8S 4K1, Canada.

出版信息

Infect Dis Rep. 2021 Jun 21;13(2):582-596. doi: 10.3390/idr13020054.

Abstract

Since the beginning of 2020, COVID-19 has been the biggest public health crisis in the world. To help develop appropriate public health measures and deploy corresponding resources, many governments have been actively tracking COVID-19 in real time within their jurisdictions. However, one of the key unresolved issues is whether COVID-19 was distributed differently among different age groups and between the two sexes in the ongoing pandemic. The objectives of this study were to use publicly available data to investigate the relative distributions of COVID-19 cases, hospitalizations, and deaths among age groups and between the sexes throughout 2020; and to analyze temporal changes in the relative frequencies of COVID-19 for each age group and each sex. Fifteen countries reported age group and/or sex data of patients with COVID-19. Our analyses revealed that different age groups and sexes were distributed differently in COVID-19 cases, hospitalizations, and deaths. However, there were differences among countries in both their age group and sex distributions. Though there was no consistent temporal change across all countries for any age group or either sex in COVID-19 cases, hospitalizations, and deaths, several countries showed statistically significant patterns. We discuss the potential mechanisms for these observations, the limitations of this study, and the implications of our results on the management of this ongoing pandemic.

摘要

自2020年初以来,新型冠状病毒肺炎(COVID-19)一直是全球最大的公共卫生危机。为了帮助制定适当的公共卫生措施并调配相应资源,许多政府一直在其辖区内积极实时追踪COVID-19。然而,一个关键的未解决问题是,在当前的疫情中,COVID-19在不同年龄组和两性之间的分布是否存在差异。本研究的目的是利用公开数据调查2020年全年COVID-19病例、住院病例和死亡病例在各年龄组以及两性之间的相对分布情况;并分析各年龄组和两性的COVID-19相对频率的时间变化。15个国家报告了COVID-19患者的年龄组和/或性别数据。我们的分析表明,不同年龄组和两性在COVID-19病例、住院病例和死亡病例中的分布存在差异。然而,各国在年龄组和性别分布方面都存在差异。尽管在所有国家中,任何年龄组或两性的COVID-19病例、住院病例和死亡病例都没有一致的时间变化,但有几个国家呈现出具有统计学意义的模式。我们讨论了这些观察结果的潜在机制、本研究的局限性以及我们的结果对当前这场疫情管理的影响。

相似文献

1
Global Temporal Patterns of Age Group and Sex Distributions of COVID-19.
Infect Dis Rep. 2021 Jun 21;13(2):582-596. doi: 10.3390/idr13020054.
2
Modeling and tracking Covid-19 cases using Big Data analytics on HPCC system platformm.
J Big Data. 2021;8(1):33. doi: 10.1186/s40537-021-00423-z. Epub 2021 Feb 15.
5
Analyzing COVID-19 pandemic for unequal distribution of tests, identified cases, deaths, and fatality rates in the top 18 countries.
Diabetes Metab Syndr. 2020 Sep-Oct;14(5):953-961. doi: 10.1016/j.dsx.2020.06.051. Epub 2020 Jun 26.
6
COVID-TRACK: world and USA SARS-COV-2 testing and COVID-19 tracking.
BioData Min. 2021 Jan 20;14(1):4. doi: 10.1186/s13040-021-00233-2.
7
Age and Gender Differences in COVID 19 Morbidity and Mortality in Nepal.
Kathmandu Univ Med J (KUMJ). 2020;18(72):329-332.
10
Global Interest in Telehealth During COVID-19 Pandemic: An Analysis of Google Trends™.
Cureus. 2020 Sep 16;12(9):e10487. doi: 10.7759/cureus.10487.

引用本文的文献

1
Clinical characteristics and predictors of COVID-19 in a community sample from urban areas of Chennai, Southern India.
Virusdisease. 2023 Dec;34(4):449-455. doi: 10.1007/s13337-023-00843-w. Epub 2023 Oct 10.
3
Prevalence of potential drug-drug interactions with ritonavir-containing COVID-19 therapy.
J Manag Care Spec Pharm. 2023 May;29(5):509-518. doi: 10.18553/jmcp.2023.22366. Epub 2023 Mar 29.
4
Identifying age- and sex-specific COVID-19 mortality trends over time in six countries.
Int J Infect Dis. 2023 Mar;128:32-40. doi: 10.1016/j.ijid.2022.12.004. Epub 2022 Dec 10.
6
7
Trends in COVID-19: Incidence, mortality, and case fatality in Iraq.
Saudi Med J. 2022 May;43(5):500-507. doi: 10.15537/smj.2022.43.5.20220088.
8
Physiological Network Is Disrupted in Severe COVID-19.
Front Physiol. 2022 Mar 10;13:848172. doi: 10.3389/fphys.2022.848172. eCollection 2022.
9
Estradiol reduces ACE2 and TMPRSS2 mRNA levels in A549 human lung epithelial cells.
Drug Dev Res. 2022 Jun;83(4):961-966. doi: 10.1002/ddr.21923. Epub 2022 Feb 1.
10
The Third Wave of the COVID-19 Arrived in Afghanistan: A Severe Case with Skin Manifestation.
Int Med Case Rep J. 2021 Nov 11;14:761-764. doi: 10.2147/IMCRJ.S335452. eCollection 2021.

本文引用的文献

1
Behaviours and attitudes in response to the COVID-19 pandemic: insights from a cross-national Facebook survey.
EPJ Data Sci. 2021;10(1):17. doi: 10.1140/epjds/s13688-021-00270-1. Epub 2021 Apr 14.
3
Vaccinating the oldest against COVID-19 saves both the most lives and most years of life.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2026322118.
4
Age groups that sustain resurging COVID-19 epidemics in the United States.
Science. 2021 Mar 26;371(6536). doi: 10.1126/science.abe8372. Epub 2021 Feb 2.
7
A spatial-temporal description of the SARS-CoV-2 infections in Indonesia during the first six months of outbreak.
PLoS One. 2020 Dec 22;15(12):e0243703. doi: 10.1371/journal.pone.0243703. eCollection 2020.
8
Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission.
Nat Commun. 2020 Dec 9;11(1):6317. doi: 10.1038/s41467-020-19741-6.
9
Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications.
Eur J Epidemiol. 2020 Dec;35(12):1123-1138. doi: 10.1007/s10654-020-00698-1. Epub 2020 Dec 8.
10
Role of testosterone in COVID-19 patients - A double-edged sword?
Med Hypotheses. 2020 Nov;144:110287. doi: 10.1016/j.mehy.2020.110287. Epub 2020 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验