文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

白蛋白包覆单核氧化铁纳米颗粒用于增强分子磁共振成像(MRI/MPI)。

Albumin-Coated Single-Core Iron Oxide Nanoparticles for Enhanced Molecular Magnetic Imaging (MRI/MPI).

机构信息

Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany.

Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany.

出版信息

Int J Mol Sci. 2021 Jun 9;22(12):6235. doi: 10.3390/ijms22126235.


DOI:10.3390/ijms22126235
PMID:34207769
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8229057/
Abstract

Colloidal stability of magnetic iron oxide nanoparticles (MNP) in physiological environments is crucial for their (bio)medical application. MNP are potential contrast agents for different imaging modalities such as magnetic resonance imaging (MRI) and magnetic particle imaging (MPI). Applied as a hybrid method (MRI/MPI), these are valuable tools for molecular imaging. Continuously synthesized and in-situ stabilized single-core MNP were further modified by albumin coating. Synthesizing and coating of MNP were carried out in aqueous media without using any organic solvent in a simple procedure. The additional steric stabilization with the biocompatible protein, namely bovine serum albumin (BSA), led to potential contrast agents suitable for multimodal (MRI/MPI) imaging. The colloidal stability of BSA-coated MNP was investigated in different sodium chloride concentrations (50 to 150 mM) in short- and long-term incubation (from two hours to one week) using physiochemical characterization techniques such as transmission electron microscopy (TEM) for core size and differential centrifugal sedimentation (DCS) for hydrodynamic size. Magnetic characterization such as magnetic particle spectroscopy (MPS) and nuclear magnetic resonance (NMR) measurements confirmed the successful surface modification as well as exceptional colloidal stability of the relatively large single-core MNP. For comparison, two commercially available MNP systems were investigated, MNP-clusters, the former liver contrast agent (Resovist), and single-core MNP (SHP-30) manufactured by thermal decomposition. The tailored core size, colloidal stability in a physiological environment, and magnetic performance of our MNP indicate their ability to be used as molecular magnetic contrast agents for MPI and MRI.

摘要

磁性氧化铁纳米粒子(MNP)在生理环境中的胶体稳定性对于它们的(生物)医学应用至关重要。MNP 是磁共振成像(MRI)和磁粒子成像(MPI)等不同成像方式的潜在对比剂。作为一种混合方法(MRI/MPI)应用时,它们是分子成像的有价值工具。连续合成并原位稳定的单核 MNP 进一步通过白蛋白涂层进行修饰。在不使用任何有机溶剂的简单过程中,在水介质中进行 MNP 的合成和涂层。通过与生物相容的蛋白质(即牛血清白蛋白(BSA))进行额外的空间稳定化,得到了适用于多模态(MRI/MPI)成像的潜在对比剂。使用物理化学特性表征技术,如透射电子显微镜(TEM)测量核大小和差速离心沉降(DCS)测量水动力大小,研究了 BSA 涂层 MNP 在不同氯化钠浓度(50 至 150mM)下的短期和长期孵育(从两小时到一周)中的胶体稳定性。磁特性表征,如磁粒子光谱(MPS)和核磁共振(NMR)测量,证实了成功的表面修饰以及相对较大单核 MNP 的出色胶体稳定性。为了进行比较,研究了两种市售的 MNP 系统,即 MNP 簇,前肝对比剂(Resovist)和通过热分解制造的单核 MNP(SHP-30)。我们的 MNP 的定制核大小、生理环境中的胶体稳定性和磁性能表明它们有能力作为 MPI 和 MRI 的分子磁性对比剂使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/470622292529/ijms-22-06235-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/b247e337401b/ijms-22-06235-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/9779439fa2c4/ijms-22-06235-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/61da32523b99/ijms-22-06235-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/548e47131aee/ijms-22-06235-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/8f9fd129e63f/ijms-22-06235-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/e53d2c479e07/ijms-22-06235-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/dea7400a0472/ijms-22-06235-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/470622292529/ijms-22-06235-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/b247e337401b/ijms-22-06235-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/9779439fa2c4/ijms-22-06235-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/61da32523b99/ijms-22-06235-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/548e47131aee/ijms-22-06235-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/8f9fd129e63f/ijms-22-06235-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/e53d2c479e07/ijms-22-06235-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/dea7400a0472/ijms-22-06235-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db95/8229057/470622292529/ijms-22-06235-g008.jpg

相似文献

[1]
Albumin-Coated Single-Core Iron Oxide Nanoparticles for Enhanced Molecular Magnetic Imaging (MRI/MPI).

Int J Mol Sci. 2021-6-9

[2]
Iron oxide nanoparticle-micelles (ION-micelles) for sensitive (molecular) magnetic particle imaging and magnetic resonance imaging.

PLoS One. 2013-2-20

[3]
One-Pot Synthesis of FeO@BSA Core-Shell Nanoparticles as Enhanced T-Weighted Magnetic Resonance Imagine Contrast Agents.

ACS Appl Mater Interfaces. 2020-12-23

[4]
Magnetic separation of iron oxide nanoparticles to improve their application for magnetic particle imaging.

Phys Med Biol. 2021-1-8

[5]
Biocompatible Peptide-Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for In Vivo Contrast-Enhanced Magnetic Resonance Imaging.

ACS Nano. 2018-7-11

[6]
Gum arabic-coated magnetic nanoparticles for potential application in simultaneous magnetic targeting and tumor imaging.

AAPS J. 2009-10-20

[7]
A value-added exopolysaccharide as a coating agent for MRI nanoprobes.

Nanoscale. 2015-9-14

[8]
Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging.

Nanoscale. 2017-1-19

[9]
Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging.

Nanomaterials (Basel). 2018-3-21

[10]
The Impact of Multiple Functional Layers in the Structure of Magnetic Nanoparticles and Their Influence on Albumin Interaction.

Int J Mol Sci. 2021-9-28

引用本文的文献

[1]
Folate-Modified Albumin-Functionalized Iron Oxide Nanoparticles for Theranostics: Engineering and In Vitro PDT Treatment of Breast Cancer Cell Lines.

Pharmaceutics. 2025-7-30

[2]
Binding Capacity and Adsorption Stability of Uremic Metabolites to Albumin-Modified Magnetic Nanoparticles.

Int J Mol Sci. 2025-6-3

[3]
Evaluation of phytotoxicity and genotoxicity of TMA-stabilized iron-oxide nanoparticle in corn (Zea mays) young plants.

Sci Rep. 2025-5-29

[4]
Advances in engineering nanoparticles for magnetic particle imaging (MPI).

Sci Adv. 2025-1-10

[5]
Design and characterisation of casein coated and drug loaded magnetic nanoparticles for theranostic applications.

RSC Adv. 2024-8-20

[6]
Post-synthesis Oxidation of Superparamagnetic Iron Oxide Nanoparticles to Enhance Magnetic Particle Imaging Performance.

ACS Appl Nano Mater. 2024-1-12

[7]
A Study of Hyaluronic Acid's Theoretical Reactivity and of Magnetic Nanoparticles Capped with Hyaluronic Acid.

Materials (Basel). 2024-3-7

[8]
A hybrid nanoparticle-protein hydrogel system for prolonged local anesthesia.

Biomaterials. 2024-4

[9]
Nitrogen-vacancy center magnetic imaging of FeO nanoparticles inside the gastrointestinal tract of .

Nanoscale Adv. 2023-12-5

[10]
Recent Advancements and Strategies for Overcoming the Blood-Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma.

Polymers (Basel). 2023-10-2

本文引用的文献

[1]
Continuously manufactured single-core iron oxide nanoparticles for cancer theranostics as valuable contribution in translational research.

Nanoscale Adv. 2020-8-17

[2]
Maintaining Safety with SARS-CoV-2 Vaccines.

N Engl J Med. 2021-2-18

[3]
Micromixer Synthesis Platform for a Tuneable Production of Magnetic Single-Core Iron Oxide Nanoparticles.

Nanomaterials (Basel). 2020-9-15

[4]
Surface Modification of Iron Oxide-Based Magnetic Nanoparticles for Cerebral Theranostics: Application and Prospection.

Nanomaterials (Basel). 2020-7-24

[5]
Towards standardized purification of bacterial magnetic nanoparticles for future in vivo applications.

Acta Biomater. 2021-1-15

[6]
Influence of Experimental Parameters of a Continuous Flow Process on the Properties of Very Small Iron Oxide Nanoparticles (VSION) Designed for T-Weighted Magnetic Resonance Imaging (MRI).

Nanomaterials (Basel). 2020-4-15

[7]
Subsecond total-body imaging using ultrasensitive positron emission tomography.

Proc Natl Acad Sci U S A. 2020-1-21

[8]
Iron-based nanoparticles and their potential toxicity: Focus on oxidative stress and apoptosis.

Chem Biol Interact. 2019-12-21

[9]
Response Rate Following Albumin-Bound Paclitaxel Plus Gemcitabine Plus Cisplatin Treatment Among Patients With Advanced Pancreatic Cancer: A Phase 1b/2 Pilot Clinical Trial.

JAMA Oncol. 2020-1-1

[10]
Magnetic particle imaging in vascular medicine.

Innov Surg Sci. 2018-10-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索