Suppr超能文献

3D 生物打印多细胞血管模型。

3D Bioprinted Multicellular Vascular Models.

机构信息

Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.

Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA.

出版信息

Adv Healthc Mater. 2021 Nov;10(21):e2101141. doi: 10.1002/adhm.202101141. Epub 2021 Jul 26.

Abstract

3D bioprinting is an emerging additive manufacturing technique to fabricate constructs for human disease modeling. However, current cell-laden bioinks lack sufficient biocompatibility, printability, and structural stability needed to translate this technology to preclinical and clinical trials. Here, a new class of nanoengineered hydrogel-based cell-laden bioinks is introduced, that can be printed into 3D, anatomically accurate, multicellular blood vessels to recapitulate both the physical and chemical microenvironments of native human vasculature. A remarkably unique characteristic of this bioink is that regardless of cell density, it demonstrates a high printability and ability to protect encapsulated cells against high shear forces in the bioprinting process. 3D bioprinted cells maintain a healthy phenotype and remain viable for nearly one-month post-fabrication. Leveraging these properties, the nanoengineered bioink is printed into 3D cylindrical blood vessels, consisting of living co-culture of endothelial cells and vascular smooth muscle cells, providing the opportunity to model vascular function and pathophysiology. Upon cytokine stimulation and blood perfusion, this 3D bioprinted vessel is able to recapitulate thromboinflammatory responses observed only in advanced in vitro preclinical models or in vivo. Therefore, this 3D bioprinted vessel provides a potential tool to understand vascular disease pathophysiology and assess therapeutics, toxins, or other chemicals.

摘要

3D 生物打印是一种新兴的添加剂制造技术,用于制造用于人类疾病建模的构建体。然而,目前的细胞负载生物墨水缺乏足够的生物相容性、可打印性和结构稳定性,无法将这项技术转化为临床前和临床试验。在这里,引入了一类新的纳米工程水凝胶基细胞负载生物墨水,可以将其打印成 3D 、解剖准确的、多细胞血管,以重现天然人类血管的物理和化学微环境。这种生物墨水的一个非常独特的特点是,无论细胞密度如何,它都表现出很高的可打印性和保护封装细胞免受生物打印过程中高剪切力的能力。3D 打印的细胞保持健康的表型,并在制造后近一个月内保持存活。利用这些特性,纳米工程生物墨水被打印成 3D 圆柱形血管,由内皮细胞和血管平滑肌细胞的共培养物组成,为模拟血管功能和病理生理学提供了机会。在细胞因子刺激和血液灌注后,这种 3D 生物打印的血管能够再现仅在先进的体外临床前模型或体内观察到的血栓炎症反应。因此,这种 3D 生物打印的血管提供了一种潜在的工具,可以了解血管疾病的病理生理学,并评估治疗药物、毒素或其他化学物质。

相似文献

1
3D Bioprinted Multicellular Vascular Models.
Adv Healthc Mater. 2021 Nov;10(21):e2101141. doi: 10.1002/adhm.202101141. Epub 2021 Jul 26.
2
Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
Tissue Eng Part A. 2021 Sep;27(17-18):1168-1181. doi: 10.1089/ten.TEA.2020.0305. Epub 2021 Feb 26.
3
Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue.
ACS Appl Mater Interfaces. 2020 Apr 8;12(14):15976-15988. doi: 10.1021/acsami.9b19037. Epub 2020 Mar 26.
4
A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
Acta Biomater. 2019 Sep 1;95:152-164. doi: 10.1016/j.actbio.2019.06.052. Epub 2019 Jul 2.
5
Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds.
Tissue Eng Part A. 2020 Mar;26(5-6):318-338. doi: 10.1089/ten.TEA.2019.0298.
6
Nanocomposite bioinks for 3D bioprinting.
Acta Biomater. 2022 Oct 1;151:45-69. doi: 10.1016/j.actbio.2022.08.014. Epub 2022 Aug 13.
7
Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution.
J Mech Behav Biomed Mater. 2020 Mar;103:103524. doi: 10.1016/j.jmbbm.2019.103524. Epub 2019 Nov 9.
8
Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting.
ACS Appl Mater Interfaces. 2017 Dec 20;9(50):43449-43458. doi: 10.1021/acsami.7b13602. Epub 2017 Dec 7.
9
3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
Mater Sci Eng C Mater Biol Appl. 2020 Jul;112:110905. doi: 10.1016/j.msec.2020.110905. Epub 2020 Mar 30.
10
3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
Biomacromolecules. 2015 May 11;16(5):1489-96. doi: 10.1021/acs.biomac.5b00188. Epub 2015 Apr 7.

引用本文的文献

1
3D bioprinting patient-specific grafts for tendon/ligament repair in motion: emerging trends and challenges.
Front Bioeng Biotechnol. 2025 Aug 22;13:1643430. doi: 10.3389/fbioe.2025.1643430. eCollection 2025.
2
Stimuli-responsive hybrid materials for 4D tissue models.
Mater Today Bio. 2025 Jul 2;33:102035. doi: 10.1016/j.mtbio.2025.102035. eCollection 2025 Aug.
3
Engineering in vitro vascular microsystems.
Microsyst Nanoeng. 2025 May 22;11(1):100. doi: 10.1038/s41378-025-00956-w.
4
Stem-Cell-Based Small-Diameter Blood Vessels with 3D Printing.
Small Sci. 2024 Sep 10;4(11):2400261. doi: 10.1002/smsc.202400261. eCollection 2024 Nov.
5
Advances, challenges and future applications of liver organoids in experimental regenerative medicine.
Front Med (Lausanne). 2025 Jan 24;11:1521851. doi: 10.3389/fmed.2024.1521851. eCollection 2024.
6
Bioengineered human arterial equivalent and its applications from vascular graft to disease modeling.
iScience. 2024 Oct 19;27(11):111215. doi: 10.1016/j.isci.2024.111215. eCollection 2024 Nov 15.
7
Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering.
Mater Today Bio. 2024 Oct 2;29:101286. doi: 10.1016/j.mtbio.2024.101286. eCollection 2024 Dec.
8
Harnessing the power of bioprinting for the development of next-generation models of thrombosis.
Bioact Mater. 2024 Sep 5;42:328-344. doi: 10.1016/j.bioactmat.2024.08.040. eCollection 2024 Dec.
9
Capturing physiological hemodynamic flow and mechanosensitive cell signaling in vessel-on-a-chip platforms.
Front Physiol. 2024 Jul 29;15:1425618. doi: 10.3389/fphys.2024.1425618. eCollection 2024.
10

本文引用的文献

1
Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology.
Adv Healthc Mater. 2020 Apr;9(8):e1901255. doi: 10.1002/adhm.201901255. Epub 2020 Feb 25.
2
Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies.
Adv Mater. 2020 Jan;32(1):e1902026. doi: 10.1002/adma.201902026. Epub 2019 Oct 10.
3
Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels.
Sci Adv. 2019 Sep 6;5(9):eaaw2459. doi: 10.1126/sciadv.aaw2459. eCollection 2019 Sep.
5
Biofabrication strategies for 3D in vitro models and regenerative medicine.
Nat Rev Mater. 2018 May;3(5):21-37. doi: 10.1038/s41578-018-0006-y. Epub 2018 Apr 26.
6
Multivascular networks and functional intravascular topologies within biocompatible hydrogels.
Science. 2019 May 3;364(6439):458-464. doi: 10.1126/science.aav9750.
7
2D Nanoclay for Biomedical Applications: Regenerative Medicine, Therapeutic Delivery, and Additive Manufacturing.
Adv Mater. 2019 Jun;31(23):e1900332. doi: 10.1002/adma.201900332. Epub 2019 Apr 3.
8
Microstructure and Soft Glassy Dynamics of an Aqueous Laponite Dispersion.
Langmuir. 2018 Nov 6;34(44):13079-13103. doi: 10.1021/acs.langmuir.8b01830. Epub 2018 Sep 18.
9
Emerging trends in multiscale modeling of vascular pathophysiology: Organ-on-a-chip and 3D printing.
Biomaterials. 2019 Mar;196:2-17. doi: 10.1016/j.biomaterials.2018.07.029. Epub 2018 Jul 23.
10
Engineering biofunctional in vitro vessel models using a multilayer bioprinting technique.
Sci Rep. 2018 Jul 11;8(1):10430. doi: 10.1038/s41598-018-28715-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验