IEEE J Biomed Health Inform. 2022 Jan;26(1):44-55. doi: 10.1109/JBHI.2021.3110593. Epub 2022 Jan 17.
Though deep learning has shown successful performance in classifying the label and severity stage of certain diseases, most of them give few explanations on how to make predictions. Inspired by Koch's Postulates, the foundation in evidence-based medicine (EBM) to identify the pathogen, we propose to exploit the interpretability of deep learning application in medical diagnosis. By isolating neuron activation patterns from a diabetic retinopathy (DR) detector and visualizing them, we can determine the symptoms that the DR detector identifies as evidence to make prediction. To be specific, we first define novel pathological descriptors using activated neurons of the DR detector to encode both spatial and appearance information of lesions. Then, to visualize the symptom encoded in the descriptor, we propose Patho-GAN, a new network to synthesize medically plausible retinal images. By manipulating these descriptors, we could even arbitrarily control the position, quantity, and categories of generated lesions. We also show that our synthesized images carry the symptoms directly related to diabetic retinopathy diagnosis. Our generated images are both qualitatively and quantitatively superior to the ones by previous methods. Besides, compared to existing methods that take hours to generate an image, our second level speed endows the potential to be an effective solution for data augmentation.
尽管深度学习在对某些疾病的标签和严重程度阶段进行分类方面表现出了成功的性能,但它们大多没有解释如何进行预测。受循证医学(EBM)中识别病原体的科赫假设的启发,我们提出利用深度学习在医学诊断中的可解释性。通过从糖尿病视网膜病变(DR)检测器中分离出神经元激活模式并对其进行可视化,我们可以确定 DR 检测器识别为做出预测的证据的症状。具体来说,我们首先使用 DR 检测器的激活神经元定义新的病理描述符,以编码病变的空间和外观信息。然后,为了可视化描述符中编码的症状,我们提出了 Patho-GAN,这是一种新的网络,可以合成医学上合理的视网膜图像。通过操纵这些描述符,我们甚至可以任意控制生成病变的位置、数量和类别。我们还表明,我们生成的图像携带与糖尿病视网膜病变诊断直接相关的症状。我们生成的图像在质量和数量上都优于以前的方法。此外,与以前需要数小时才能生成一张图像的方法相比,我们的二级速度为数据增强提供了有效的解决方案的潜力。