Suppr超能文献

用于绘制转录调控网络的计算生物学方法。

Computational biology approaches for mapping transcriptional regulatory networks.

作者信息

Saint-André Violaine

机构信息

Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.

出版信息

Comput Struct Biotechnol J. 2021 Aug 21;19:4884-4895. doi: 10.1016/j.csbj.2021.08.028. eCollection 2021.

Abstract

Transcriptional Regulatory Networks (TRNs) are mainly responsible for the cell-type- or cell-state-specific expression of gene sets from the same DNA sequence. However, so far there are no precise maps of TRNs available for each cell-type or cell-state, and no ideal tool to map those networks clearly and in full from biological samples. In this review, major approaches and tools to map TRNs from high-throughput data are presented, depending on the type of methods or data used to infer them, and their advantages and limitations are discussed. After summarizing the main principles defining the topology and structure–function relationships in TRNs, an overview of the extensive work done to map TRNs from bulk transcriptomic data will be presented by type of methodological approach. Most recent modellings of TRNs using other types of molecular data or integrating different data types, including single-cell RNA-sequencing and chromatin information, will then be discussed, before briefly concluding with improvements expected to come in the field.

摘要

转录调控网络(TRNs)主要负责同一DNA序列中基因集的细胞类型或细胞状态特异性表达。然而,到目前为止,尚无针对每种细胞类型或细胞状态的精确TRN图谱,也没有理想的工具能够从生物样本中清晰且完整地绘制这些网络。在本综述中,介绍了从高通量数据绘制TRN的主要方法和工具,根据用于推断它们的方法或数据类型进行了阐述,并讨论了其优缺点。在总结了定义TRN拓扑结构和结构-功能关系的主要原理之后,将按方法类型概述从批量转录组数据绘制TRN所做的大量工作。接着将讨论使用其他类型分子数据或整合不同数据类型(包括单细胞RNA测序和染色质信息)对TRN进行的最新建模,最后简要总结该领域预期的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/8426465/c9703f8cf305/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验