Peng N N, Chow K W, Liu C H
Department of Mechanical Engineering, University of Hong Kong, Pokfulam, Hong Kong.
Phys Fluids (1994). 2021 Oct;33(10):103325. doi: 10.1063/5.0068244. Epub 2021 Oct 25.
Aerosol transmission is now well-established as a route in the spread of the SARS-CoV-2 virus. Factors influencing the transport of virus-laden particles in an elevator cabin are investigated computationally and include human respiratory events, locations of the infected person(s), and the ventilation system (ventilation mode, ventilation capacity, and vent schemes). "Breath," "cough," and "sneeze" are defined quantitatively by the fluid jet velocities and particle sizes. For natural ventilation, most particles exhaled by sneezing and coughing tend to deposit on surfaces quickly, but aerosol generated by breathing will remain suspended in the air longer. For forced ventilation, motions of particles under different ventilation capacities are compared. Larger particles otherwise deposited readily on solid surfaces may be slowed down by airflow. Air currents also accelerate the motions of smaller particles, facilitating the subsequent deposition of micrometer or sub-micrometer particles. Locations of the infected person(s) lead to different spreading scenarios due to the distinctive motions of the particles generated by the various respiratory events. Sneeze particles will likely contaminate the person in front of the infected passenger only. Cough particles will increase the risk of all the people around the injector. Breath particles tend to spread throughout the confined environment. An optimized vent scheme is introduced and can reduce particles suspended in the air by up to 80% as compared with commonly used schemes. The purification function of this vent model is robust to various positions of the infected passenger.
气溶胶传播现已被确认为严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒传播的一种途径。本文通过计算研究了影响电梯轿厢内载有病毒颗粒传播的因素,包括人类呼吸事件、感染者位置以及通风系统(通风模式、通风能力和通风方案)。通过流体射流速度和颗粒大小对“呼气”“咳嗽”和“打喷嚏”进行了定量定义。对于自然通风,打喷嚏和咳嗽呼出的大多数颗粒往往会很快沉积在表面,但呼气产生的气溶胶会在空气中悬浮更长时间。对于强制通风,比较了不同通风能力下颗粒的运动情况。原本容易沉积在固体表面的较大颗粒可能会因气流而减速。气流也会加速较小颗粒的运动,促进微米或亚微米颗粒随后的沉积。由于各种呼吸事件产生的颗粒运动特性不同,感染者的位置会导致不同的传播情况。打喷嚏产生的颗粒可能只会污染被感染乘客前方的人。咳嗽产生的颗粒会增加感染者周围所有人的感染风险。呼气产生的颗粒往往会在整个封闭环境中传播。本文介绍了一种优化的通风方案,与常用方案相比,可将空气中悬浮的颗粒减少多达80%。这种通风模型的净化功能对于被感染乘客的各种位置都很有效。