Suppr超能文献

机器学习在可切除上消化道癌症个体化生存预测中的应用。

Machine learning for optimized individual survival prediction in resectable upper gastrointestinal cancer.

机构信息

Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.

Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.

出版信息

J Cancer Res Clin Oncol. 2023 May;149(5):1691-1702. doi: 10.1007/s00432-022-04063-5. Epub 2022 May 26.

Abstract

PURPOSE

Surgical oncologists are frequently confronted with the question of expected long-term prognosis. The aim of this study was to apply machine learning algorithms to optimize survival prediction after oncological resection of gastroesophageal cancers.

METHODS

Eligible patients underwent oncological resection of gastric or distal esophageal cancer between 2001 and 2020 at Heidelberg University Hospital, Department of General Surgery. Machine learning methods such as multi-task logistic regression and survival forests were compared with usual algorithms to establish an individual estimation.

RESULTS

The study included 117 variables with a total of 1360 patients. The overall missingness was 1.3%. Out of eight machine learning algorithms, the random survival forest (RSF) performed best with a concordance index of 0.736 and an integrated Brier score of 0.166. The RSF demonstrated a mean area under the curve (AUC) of 0.814 over a time period of 10 years after diagnosis. The most important long-term outcome predictor was lymph node ratio with a mean AUC of 0.730. A numeric risk score was calculated by the RSF for each patient and three risk groups were defined accordingly. Median survival time was 18.8 months in the high-risk group, 44.6 months in the medium-risk group and above 10 years in the low-risk group.

CONCLUSION

The results of this study suggest that RSF is most appropriate to accurately answer the question of long-term prognosis. Furthermore, we could establish a compact risk score model with 20 input parameters and thus provide a clinical tool to improve prediction of oncological outcome after upper gastrointestinal surgery.

摘要

目的

外科肿瘤学家经常面临长期预后的预期问题。本研究旨在应用机器学习算法优化胃食管癌症根治性切除术后的生存预测。

方法

符合条件的患者于 2001 年至 2020 年期间在海德堡大学医院普通外科接受了胃或远端食管癌的肿瘤切除术。将多任务逻辑回归和生存森林等机器学习方法与常规算法进行比较,以建立个体估计。

结果

该研究共纳入了 117 个变量,总计 1360 例患者。总缺失率为 1.3%。在 8 种机器学习算法中,随机生存森林(RSF)表现最佳,一致性指数为 0.736,综合 Brier 得分 0.166。RSF 在诊断后 10 年内的平均曲线下面积(AUC)为 0.814。最重要的长期预后预测因子是淋巴结比率,平均 AUC 为 0.730。通过 RSF 为每位患者计算了一个风险评分,并相应地定义了三个风险组。高危组的中位生存时间为 18.8 个月,中危组为 44.6 个月,低危组超过 10 年。

结论

本研究结果表明,RSF 最适合准确回答长期预后问题。此外,我们可以建立一个包含 20 个输入参数的紧凑风险评分模型,从而为改善上消化道手术后的肿瘤学预后预测提供临床工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bd4/11796785/6c6520332fad/432_2022_4063_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验