Suppr超能文献

多模态深度学习提高左心室肥厚的诊断精度。

Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy.

作者信息

Soto Jessica Torres, Weston Hughes J, Sanchez Pablo Amador, Perez Marco, Ouyang David, Ashley Euan A

机构信息

Department of Biomedical Data Science, Stanford University, USA.

Department of Computer Science, Stanford University, USA.

出版信息

Eur Heart J Digit Health. 2022 May 23;3(3):380-389. doi: 10.1093/ehjdh/ztac033. eCollection 2022 Sep.

Abstract

AIMS

Determining the aetiology of left ventricular hypertrophy (LVH) can be challenging due to the similarity in clinical presentation and cardiac morphological features of diverse causes of disease. In particular, distinguishing individuals with hypertrophic cardiomyopathy (HCM) from the much larger set of individuals with manifest or occult hypertension (HTN) is of major importance for family screening and the prevention of sudden death. We hypothesized that an artificial intelligence method based joint interpretation of 12-lead electrocardiograms and echocardiogram videos could augment physician interpretation.

METHODS AND RESULTS

We chose not to train on proximate data labels such as physician over-reads of ECGs or echocardiograms but instead took advantage of electronic health record derived clinical blood pressure measurements and diagnostic consensus (often including molecular testing) among physicians in an HCM centre of excellence. Using more than 18 000 combined instances of electrocardiograms and echocardiograms from 2728 patients, we developed LVH-fusion. On held-out test data, LVH-fusion achieved an F1-score of 0.71 in predicting HCM, and 0.96 in predicting HTN. In head-to-head comparison with human readers LVH-fusion had higher sensitivity and specificity rates than its human counterparts. Finally, we use explainability techniques to investigate local and global features that positively and negatively impact LVH-fusion prediction estimates providing confirmation from unsupervised analysis the diagnostic power of lateral T-wave inversion on the ECG and proximal septal hypertrophy on the echocardiogram for HCM.

CONCLUSION

These results show that deep learning can provide effective physician augmentation in the face of a common diagnostic dilemma with far reaching implications for the prevention of sudden cardiac death.

摘要

目的

由于多种疾病病因的临床表现和心脏形态特征相似,确定左心室肥厚(LVH)的病因具有挑战性。特别是,将肥厚型心肌病(HCM)患者与数量多得多的显性或隐匿性高血压(HTN)患者区分开来,对于家族筛查和预防猝死至关重要。我们假设基于人工智能方法对12导联心电图和超声心动图视频进行联合解读,可以增强医生的解读能力。

方法和结果

我们选择不使用诸如医生对心电图或超声心动图的复查等近似数据标签进行训练,而是利用从电子健康记录中得出的临床血压测量值以及一家卓越的HCM中心医生之间的诊断共识(通常包括分子检测)。我们使用来自2728名患者的超过18000份心电图和超声心动图的组合实例,开发了LVH融合模型。在留出的测试数据上,LVH融合模型在预测HCM时的F1分数为0.71,在预测HTN时为0.96。在与人类读者的直接比较中,LVH融合模型的敏感性和特异性率高于人类同行。最后,我们使用可解释性技术来研究对LVH融合模型预测估计有正面和负面影响的局部和全局特征,从无监督分析中证实了心电图上的外侧T波倒置和超声心动图上的近端室间隔肥厚对HCM的诊断能力。

结论

这些结果表明,面对常见的诊断困境,深度学习可以为医生提供有效的辅助,对预防心源性猝死具有深远意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7636/9707995/afbbf87fee24/ztac033ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验