Irradiation Immunity Interaction Lab, Canberra, ACT, Australia.
Division of Genome Sciences & Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
PLoS One. 2022 Feb 28;17(2):e0264631. doi: 10.1371/journal.pone.0264631. eCollection 2022.
Clinical adoption of immune checkpoint inhibitors in cancer management has highlighted the interconnection between carcinogenesis and the immune system. Immune cells are integral to the tumour microenvironment and can influence the outcome of therapies. Better understanding of an individual's immune landscape may play an important role in treatment personalisation. Peripheral blood is a readily accessible source of information to study an individual's immune landscape compared to more complex and invasive tumour bioipsies, and may hold immense diagnostic and prognostic potential. Identifying the critical components of these immune signatures in peripheral blood presents an attractive alternative to tumour biopsy-based immune phenotyping strategies. We used two syngeneic solid tumour models, a 4T1 breast cancer model and a CT26 colorectal cancer model, in a longitudinal study of the peripheral blood immune landscape. Our strategy combined two highly accessible approaches, blood leukocyte immune phenotyping and plasma soluble immune factor characterisation, to identify distinguishing immune signatures of the CT26 and 4T1 tumour models using machine learning. Myeloid cells, specifically neutrophils and PD-L1-expressing myeloid cells, were found to correlate with tumour size in both the models. Elevated levels of G-CSF, IL-6 and CXCL13, and B cell counts were associated with 4T1 growth, whereas CCL17, CXCL10, total myeloid cells, CCL2, IL-10, CXCL1, and Ly6Cintermediate monocytes were associated with CT26 tumour development. Peripheral blood appears to be an accessible means to interrogate tumour-dependent changes to the host immune landscape, and to identify blood immune phenotypes for future treatment stratification.
在癌症管理中,临床采用免疫检查点抑制剂突出了癌症发生与免疫系统之间的相互关系。免疫细胞是肿瘤微环境的重要组成部分,能够影响治疗效果。更好地了解个体的免疫状态可能在治疗个体化中发挥重要作用。与更复杂和侵入性的肿瘤活检相比,外周血是研究个体免疫状态的一种更容易获得的信息来源,并且可能具有巨大的诊断和预后潜力。在外周血中识别这些免疫特征的关键成分,为基于肿瘤活检的免疫表型策略提供了一种有吸引力的替代方法。我们使用两种同源的实体瘤模型,4T1 乳腺癌模型和 CT26 结直肠癌模型,对外周血免疫图谱进行了纵向研究。我们的策略结合了两种高度可及的方法,即血液白细胞免疫表型分析和血浆可溶性免疫因子特征分析,使用机器学习来识别 CT26 和 4T1 肿瘤模型的区别性免疫特征。我们发现,在这两种模型中,髓样细胞,特别是中性粒细胞和 PD-L1 表达的髓样细胞,与肿瘤大小相关。G-CSF、IL-6 和 CXCL13 的水平升高以及 B 细胞计数与 4T1 的生长相关,而 CCL17、CXCL10、总髓样细胞、CCL2、IL-10、CXCL1 和 Ly6C 中间单核细胞与 CT26 肿瘤的发展相关。外周血似乎是一种可行的方法,可以探究肿瘤对宿主免疫状态的依赖变化,并确定未来治疗分层的血液免疫表型。