文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米海绵作为药物传递载体的兴起:制备、表征和应用。

The ascension of nanosponges as a drug delivery carrier: preparation, characterization, and applications.

机构信息

Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.

出版信息

J Mater Sci Mater Med. 2022 Mar 4;33(3):28. doi: 10.1007/s10856-022-06652-9.


DOI:10.1007/s10856-022-06652-9
PMID:35244808
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8897344/
Abstract

Nanosponges are nanosized drug carriers with a three-dimensional structure created by crosslinking polymers. They have the advantage of being able to hold a wide range of drugs of various sizes. Nanosponges come in a variety of shapes and sizes. They are distinguished by the research method used, the type of polymer used, and the type of drug they may contain. Nanosponges are superior to other delivery systems because they can provide a controlled drug release pattern with targeted drug delivery. The period of action, as well as the drug's residence time, may be regulated. Since it is made of biodegradable materials, it has a low toxicity and is safe to use. The efficiency of drug encapsulation is determined by the size of the drug molecule and the amount of void space available. Cancer, enzyme and biocatalyst carrier, oxygen delivery, solubility enhancement, enzyme immobilization, and poison absorbent are some of the applications for nanosponges. The method of preparation, characterization, factors affecting nanosponge development, drug loading and release mechanism, recent developments in this area, and patents filed in the area of nanosponges are all highlighted in this study. Graphical abstract.

摘要

纳米海绵是一种具有三维结构的纳米药物载体,通过交联聚合物形成。它们的优点是能够容纳各种大小的多种药物。纳米海绵有多种形状和大小。它们的区别在于所使用的研究方法、所使用的聚合物类型以及可能包含的药物类型。纳米海绵优于其他给药系统,因为它们可以提供具有靶向药物递送的受控药物释放模式。作用时间以及药物的停留时间可以得到调节。由于它是由可生物降解材料制成的,因此具有低毒性,使用安全。药物包封的效率取决于药物分子的大小和可用的空隙空间量。纳米海绵的应用包括癌症、酶和生物催化剂载体、氧气输送、溶解度增强、酶固定化和毒物吸收。本研究重点介绍了纳米海绵的制备方法、表征、影响纳米海绵发展的因素、药物负载和释放机制、该领域的最新发展以及纳米海绵领域的专利申请。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/8b1bf3f021ad/10856_2022_6652_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/6db11ad15659/10856_2022_6652_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/dbf17d1c7215/10856_2022_6652_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/80f610fb89ef/10856_2022_6652_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/84f43d9f33d1/10856_2022_6652_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/a89d7e9d4c54/10856_2022_6652_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/29ca01fba348/10856_2022_6652_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/97de527a8d32/10856_2022_6652_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/8b1bf3f021ad/10856_2022_6652_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/6db11ad15659/10856_2022_6652_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/dbf17d1c7215/10856_2022_6652_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/80f610fb89ef/10856_2022_6652_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/84f43d9f33d1/10856_2022_6652_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/a89d7e9d4c54/10856_2022_6652_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/29ca01fba348/10856_2022_6652_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/97de527a8d32/10856_2022_6652_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da3/8897344/8b1bf3f021ad/10856_2022_6652_Fig7_HTML.jpg

相似文献

[1]
The ascension of nanosponges as a drug delivery carrier: preparation, characterization, and applications.

J Mater Sci Mater Med. 2022-3-4

[2]
Cyclodextrin based nanosponges for pharmaceutical use: a review.

Acta Pharm. 2013-9

[3]
Nanosponges- Versatile Platform as Drug Carrier.

Recent Pat Nanotechnol. 2023

[4]
Ester-Based Hydrophilic Cyclodextrin Nanosponges for Topical Ocular Drug Delivery.

Curr Pharm Des. 2016

[5]
Evolving Era of "Sponges": Nanosponges as a Versatile Nanocarrier for the Effective Skin Delivery of Drugs.

Curr Pharm Des. 2022

[6]
Cyclodextrin Nanosponges: A Revolutionary Drug Delivery Strategy.

Pharm Nanotechnol. 2024

[7]
The application of nanosponges to cancer drug delivery.

Expert Opin Drug Deliv. 2014-5-8

[8]
Nanosponges -A Promising Novel Drug Delivery System.

Recent Pat Nanotechnol. 2018

[9]
Cyclodextrin-based nanosponges as promising carriers for active pharmaceutical ingredient.

J Biochem Mol Toxicol. 2024-1

[10]
Nanosponge Carriers- An Archetype Swing in Cancer Therapy: A Comprehensive Review.

Curr Drug Targets. 2017

引用本文的文献

[1]
Optimizing ibrutinib bioavailability: Formulation and assessment of hydroxypropyl-β-cyclodextrin-based nanosponge delivery systems.

Curr Res Pharmacol Drug Discov. 2025-1-21

[2]
Fabrication, characterization, and docking studies of furosemide-loaded nanosponges using the emulsion solvent diffusion method.

Nanomedicine (Lond). 2025-6

[3]
In vitro and preclinical evaluation of the antifungal activity of 6-methoxy-1 H-indole-2-carboxylic acid produced by Bacillus toyonensis strain OQ071612 formulated as nanosponge hydrogel.

Microb Cell Fact. 2025-4-1

[4]
Host-Guest Dynamic Behavior of Melatonin Encapsulated in β-Cyclodextrin Nanosponges.

ACS Omega. 2025-1-28

[5]
New Insights in Psoriasis Management using Herbal Drug Nanocarriers.

Curr Pharm Des. 2024

[6]
Use of phosphotyrosine-containing peptides to target SH2 domains: Antagonist peptides of the Crk/CrkL-p130Cas axis.

Methods Enzymol. 2024

[7]
A Nanorobotics-Based Approach of Breast Cancer in the Nanotechnology Era.

Int J Mol Sci. 2024-5-2

[8]
Exploring Cyclodextrin-Based Nanosponges as Drug Delivery Systems: Understanding the Physicochemical Factors Influencing Drug Loading and Release Kinetics.

Int J Mol Sci. 2024-3-20

[9]
Application of 3 factorial design for loratadine-loaded nanosponge in topical gel formulation: comprehensive in-vitro and ex vivo evaluations.

Sci Rep. 2024-3-16

[10]
Nanosponge hydrogel of octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate of Alcaligenes faecalis.

Appl Microbiol Biotechnol. 2024-12

本文引用的文献

[1]
Design and formulation of polymeric nanosponge tablets with enhanced solubility for combination therapy.

RSC Adv. 2020-9-21

[2]
Dry and Wet Mechanochemical Synthesis of Piroxicam and Saccharin Co-Crystals and Evaluation by Powder X-Ray Diffraction, Thermal Analysis and Mid- and Near- Infrared Spectroscopy.

J Pharm Sci. 2022-1

[3]
Topical delivery of clobetasol propionate loaded nanosponge hydrogel for effective treatment of psoriasis: Formulation, physicochemical characterization, antipsoriatic potential and biochemical estimation.

Mater Sci Eng C Mater Biol Appl. 2021-2

[4]
Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine.

Nanomaterials (Basel). 2020-11-2

[5]
Structural elucidation of microcrystalline MOFs from powder X-ray diffraction.

Dalton Trans. 2020-10-20

[6]
Versatile Use of Nanosponge in the Pharmaceutical Arena: A Mini-Review.

Recent Pat Nanotechnol. 2020

[7]
Mechanochemical green synthesis of hyper-crosslinked cyclodextrin polymers.

Beilstein J Org Chem. 2020-6-29

[8]
Alginate-based drug oral targeting using bio-micro/nano encapsulation technologies.

Expert Opin Drug Deliv. 2020-10

[9]
Formulation of More Efficacious Curcumin Delivery Systems Using Colloid Science: Enhanced Solubility, Stability, and Bioavailability.

Molecules. 2020-6-17

[10]
History of Cyclodextrin Nanosponges.

Polymers (Basel). 2020-5-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索