Suppr超能文献

整合成像和数学建模以探究生物过程的挑战和机遇。

Challenges and opportunities of integrating imaging and mathematical modelling to interrogate biological processes.

机构信息

UCL Mechanical Engineering, Torrington Place, London WC1E 7JE, UK.

UCL Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK.

出版信息

Int J Biochem Cell Biol. 2022 May;146:106195. doi: 10.1016/j.biocel.2022.106195. Epub 2022 Mar 25.

Abstract

Advances in biological imaging have accelerated our understanding of human physiology in both health and disease. As these advances have developed, the opportunities gained by integrating with cutting-edge mathematical models have become apparent yet remain challenging. Combined imaging-modelling approaches provide unprecedented opportunity to correlate data on tissue architecture and function, across length and time scales, to better understand the mechanisms that underpin fundamental biology and also to inform clinical decisions. Here we discuss the opportunities and challenges of such approaches, providing literature examples across a range of organ systems. Given the breadth of the field we focus on the intersection of continuum modelling and in vivo imaging applied to the vasculature and blood flow, though our rationale and conclusions extend widely. We propose three key research pillars (image acquisition, image processing, mathematical modelling) and present their respective advances as well as future opportunity via better integration. Multidisciplinary efforts that develop imaging and modelling tools concurrently, and share them open-source with the research community, provide exciting opportunity for advancing these fields.

摘要

生物成像技术的进步加速了我们对健康和疾病状态下人体生理学的理解。随着这些进步的发展,与前沿数学模型相结合所带来的机会变得明显,但仍然具有挑战性。综合成像-建模方法提供了前所未有的机会,可以在组织结构和功能方面进行跨尺度的关联,从而更好地理解支撑基础生物学的机制,并为临床决策提供信息。在这里,我们讨论了这些方法的机遇和挑战,并提供了跨越一系列器官系统的文献实例。鉴于该领域的广泛性,我们重点讨论了连续体建模和体内血管成像及血流应用的交叉点,尽管我们的基本原理和结论具有广泛的适用性。我们提出了三个关键的研究支柱(图像采集、图像处理、数学建模),并展示了它们各自的进展以及通过更好的整合带来的未来机遇。同时开发成像和建模工具并与研究社区共享开源工具的多学科努力为推进这些领域提供了令人兴奋的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584a/9693675/3f2792961a73/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验