Topsakal Vedat, Heuninck Emilie, Matulic Marco, Tekin Ahmet M, Mertens Griet, Van Rompaey Vincent, Galeazzi Pablo, Zoka-Assadi Masoud, van de Heyning Paul
Department of Otorhinolaryngology Head and Neck Surgery, University Hospital UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
CASCINATION AG, Bern, Switzerland.
Front Neurol. 2022 Mar 21;13:804507. doi: 10.3389/fneur.2022.804507. eCollection 2022.
Image-guided and robot-assisted surgeries have found their applications in skullbase surgery. Technological improvements in terms of accuracy also opened new opportunities for robotically-assisted cochlear implantation surgery (RACIS). The HEARO robotic system is an otological next-generation surgical robot to assist the surgeon. It first provides software-defined spatial boundaries for orientation and reference information to anatomical structures during otological and neurosurgical procedures. Second, it executes a preplanned drill trajectory through the temporal bone. Here, we report how safe the HEARO procedure can provide an autonomous minimally invasive inner ear access and the efficiency of this access to subsequently insert the electrode array during cochlear implantation. In 22 out of 25 included patients, the surgeon was able to complete the HEARO procedure. The dedicated planning software (OTOPLAN) allowed the surgeon to reconstruct a three-dimensional representation of all the relevant anatomical structures, designate the target on the cochlea, i.e., the round window, and plan the safest trajectory to reach it. This trajectory accommodated the safety distance to the critical structures while minimizing the insertion angles. A minimal distance of 0.4 and 0.3 mm was planned to facial nerve and chorda tympani, respectively. Intraoperative cone-beam CT supported safe passage for the 22 HEARO procedures. The intraoperative accuracy analysis reported the following mean errors: 0.182 mm to target, 0.117 mm to facial nerve, and 0.107 mm to chorda tympani. This study demonstrates that microsurgical robotic technology can be used in different anatomical variations, even including a case of inner ear anomalies, with the geometrically correct keyhole to access to the inner ear. Future perspectives in RACIS may focus on improving intraoperative imaging, automated segmentation and trajectory, robotic insertion with controlled speed, and haptic feedback. This study [Experimental Antwerp robotic research otological surgery (EAR2OS) and Antwerp Robotic cochlear implantation (25 refers to 25 cases) (ARCI25)] was registered at clinicalTrials.gov under identifier NCT03746613 and NCT04102215.
https://www.clinicaltrials.gov, Identifier: NCT04102215.
图像引导和机器人辅助手术已在颅底手术中得到应用。在精度方面的技术改进也为机器人辅助人工耳蜗植入手术(RACIS)带来了新机遇。HEARO机器人系统是一款用于耳科手术的下一代手术机器人,可辅助外科医生。首先,它在耳科和神经外科手术过程中为手术定位提供软件定义的空间边界,并为解剖结构提供参考信息。其次,它能执行预先规划好的穿过颞骨的钻孔轨迹。在此,我们报告了HEARO手术在人工耳蜗植入过程中提供自主微创内耳入路的安全性以及该入路随后插入电极阵列的效率。在纳入的25例患者中,有22例外科医生能够完成HEARO手术。专用的规划软件(OTOPLAN)使外科医生能够重建所有相关解剖结构的三维图像,在耳蜗上指定靶点,即圆窗,并规划到达该靶点的最安全轨迹。该轨迹在最小化插入角度的同时,考虑到了与关键结构的安全距离。计划分别与面神经和鼓索保持最小0.4毫米和0.3毫米的距离。术中锥形束CT为22例HEARO手术提供了安全通道。术中精度分析报告了以下平均误差:靶点误差0.182毫米,面神经误差0.117毫米,鼓索误差0.107毫米。这项研究表明,显微外科机器人技术可用于不同的解剖变异情况,甚至包括内耳畸形病例,通过几何形状正确的锁孔入路进入内耳。RACIS的未来发展方向可能集中在改善术中成像、自动分割和轨迹规划、控制速度的机器人插入以及触觉反馈等方面。本研究[安特卫普机器人耳科手术实验性研究(EAR2OS)和安特卫普机器人人工耳蜗植入(25指25例)(ARCI25)]已在ClinicalTrials.gov上注册,标识符为NCT03746613和NCT04102215。