Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
ACS Chem Biol. 2022 May 20;17(5):1226-1238. doi: 10.1021/acschembio.2c00163. Epub 2022 Apr 21.
Natural drimane-type sesquiterpenes, including drimenol, display diverse biological activities. These active compounds are distributed in plants and fungi; however, their accumulation in bacteria remains unknown. Consequently, bacterial drimane-type sesquiterpene synthases remain to be characterized. Here, we report five drimenol synthases (DMSs) of marine bacterial origin, all belonging to the haloacid dehalogenase (HAD)-like hydrolase superfamily with the conserved DDxxE motif typical of class I terpene synthases and the DxDTT motif found in class II diterpene synthases. They catalyze two continuous reactions: the cyclization of farnesyl pyrophosphate (FPP) into drimenyl pyrophosphate and dephosphorylation of drimenyl pyrophosphate into drimenol. Protein structure modeling of the characterized DMS (AsDMS) suggests that the FPP substrate is located within the interdomain created by the DDxxE motif of N-domain and DxDTT motif of C-domain. Biochemical analysis revealed two aspartate residues of the xxE motif that might contribute to the capture of the pyrophosphate moiety of FPP inside the catalytic site of AsDMS, which is essential for efficient cyclization and subsequent dephosphorylation reactions. The middle aspartate residue of the DxTT motif is also critical for cyclization. Thus, AsDMS utilizes both motifs in the reactions. Remarkably, the unique protein architecture of AsDMS, which is characterized by the fusion of a HAD-like domain (N-domain) and a terpene synthase β domain (C-domain), significantly differentiates this new enzyme. Our findings of the first examples of bacterial DMSs suggest the biosynthesis of drimane sesquiterpenes in bacteria and shed light on the divergence of the structures and functions of terpene synthases.
天然的大根香叶型倍半萜,包括大根香叶醇,具有多样化的生物活性。这些活性化合物分布在植物和真菌中;然而,它们在细菌中的积累情况尚不清楚。因此,细菌的大根香叶型倍半萜合酶仍有待鉴定。在这里,我们报告了五种海洋细菌来源的大根香叶醇合酶(DMS),它们都属于卤代酸脱卤酶(HAD)样水解酶超家族,具有典型的 I 类萜烯合酶的 DDxxE 基序和 II 类二萜合酶中的 DxDTT 基序。它们催化两个连续的反应:法呢基焦磷酸(FPP)环化成大根香叶基焦磷酸和大根香叶基焦磷酸去磷酸化成大根香叶醇。所鉴定的 DMS(AsDMS)的蛋白质结构建模表明,FPP 底物位于 N 结构域的 DDxxE 基序和 C 结构域的 DxDTT 基序创建的结构域间。生化分析揭示了 xxE 基序中的两个天冬氨酸残基可能有助于将 FPP 的焦磷酸部分捕获到 AsDMS 的催化位点内,这对于有效的环化和随后的去磷酸化反应至关重要。DxDTT 基序中的中间天冬氨酸残基对于环化也很关键。因此,AsDMS 在反应中同时利用了这两个基序。值得注意的是,AsDMS 的独特蛋白质结构,其特征是融合了卤代酸脱卤酶样结构域(N 结构域)和萜烯合酶β结构域(C 结构域),显著区分了这种新的酶。我们发现了细菌 DMS 的第一个例子,这表明细菌中存在大根香叶型倍半萜的生物合成,并揭示了萜烯合酶结构和功能的分化。