Suppr超能文献

用于多视图脑连接组的解缠和比例表示学习

Disentangled and Proportional Representation Learning for Multi-View Brain Connectomes.

作者信息

Zhang Yanfu, Zhan Liang, Wu Shandong, Thompson Paul, Huang Heng

机构信息

Department of Electrical and Computer Engineering, University of Pittsburgh,Pittsburgh, PA 15260, USA.

Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15260, USA.

出版信息

Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12907:508-518. doi: 10.1007/978-3-030-87234-2_48. Epub 2021 Sep 21.

Abstract

Diffusion MRI-derived brain structural connectomes or brain networks are widely used in the brain research. However, constructing brain networks is highly dependent on various tractography algorithms, which leads to difficulties in deciding the optimal view concerning the downstream analysis. In this paper, we propose to learn a unified representation from multi-view brain networks. Particularly, we expect the learned representations to convey the information from different views fairly and in a disentangled sense. We achieve the disentanglement via an approach using unsupervised variational graph auto-encoders. We achieve the view-wise fairness, proportionality, via an alternative training routine. More specifically, we construct an analogy between training the deep network and the network flow problem. Based on the analogy, the fair representations learning is attained via a network scheduling algorithm aware of proportionality. The experimental results demonstrate that the learned representations fit various downstream tasks well. They also show that the proposed approach effectively preserves the proportionality.

摘要

基于扩散磁共振成像的脑结构连接组或脑网络在脑研究中被广泛应用。然而,构建脑网络高度依赖于各种纤维束成像算法,这给确定下游分析的最佳视角带来了困难。在本文中,我们提出从多视角脑网络学习统一表示。具体而言,我们期望学习到的表示能够公平且以解缠的方式传达来自不同视角的信息。我们通过使用无监督变分图自动编码器的方法实现解缠。我们通过交替训练例程实现视角公平性、比例性。更具体地说,我们在深度网络训练和网络流问题之间构建类比。基于该类比,通过一种知晓比例性的网络调度算法实现公平表示学习。实验结果表明,学习到的表示能很好地适用于各种下游任务。它们还表明,所提出的方法有效地保持了比例性。

相似文献

1
Disentangled and Proportional Representation Learning for Multi-View Brain Connectomes.用于多视图脑连接组的解缠和比例表示学习
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12907:508-518. doi: 10.1007/978-3-030-87234-2_48. Epub 2021 Sep 21.
2
Disentangled contrastive learning for fair graph representations.用于公平图表示的解缠对比学习
Neural Netw. 2025 Jan;181:106781. doi: 10.1016/j.neunet.2024.106781. Epub 2024 Oct 5.
6
Multiview Deep Graph Infomax to Achieve Unsupervised Graph Embedding.用于实现无监督图嵌入的多视图深度图信息最大化
IEEE Trans Cybern. 2023 Oct;53(10):6329-6339. doi: 10.1109/TCYB.2022.3163721. Epub 2023 Sep 15.
8
Representation Disentanglement for Multi-modal Brain MRI Analysis.用于多模态脑磁共振成像分析的表示解缠
Inf Process Med Imaging. 2021 Jun;12729:321-333. doi: 10.1007/978-3-030-78191-0_25. Epub 2021 Jun 14.

引用本文的文献

1
A comprehensive survey of complex brain network representation.复杂脑网络表征的全面综述。
Meta Radiol. 2023 Nov;1(3). doi: 10.1016/j.metrad.2023.100046. Epub 2023 Dec 16.
2
Current and future directions in network biology.网络生物学的当前与未来发展方向。
Bioinform Adv. 2024 Aug 14;4(1):vbae099. doi: 10.1093/bioadv/vbae099. eCollection 2024.
4
Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling Model.基于分层符号图池化模型的对比脑网络学习。
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7363-7375. doi: 10.1109/TNNLS.2022.3220220. Epub 2024 Jun 4.

本文引用的文献

6
Representation learning: a review and new perspectives.表示学习:综述与新视角。
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828. doi: 10.1109/TPAMI.2013.50.
8
Brain graphs: graphical models of the human brain connectome.脑图谱:人类脑连接组的图形模型。
Annu Rev Clin Psychol. 2011;7:113-40. doi: 10.1146/annurev-clinpsy-040510-143934.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验