Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133, Rome, Italy.
PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy.
Sci Rep. 2022 May 19;12(1):8437. doi: 10.1038/s41598-022-12631-5.
Despite the increasing interest in using microbial-based technologies to support human space exploration, many unknowns remain not only on bioprocesses but also on microbial survivability and genetic stability under non-Earth conditions. Here the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated for robustness of the repair capability of DNA lesions accumulated under Mars-like conditions (UV radiation and atmosphere) simulated in low Earth orbit using the EXPOSE-R2 facility installed outside the International Space Station. Genomic alterations were determined in a space-derivate of Chroococcidiopsis sp. CCMEE 029 obtained upon reactivation on Earth of the space-exposed cells. Comparative analysis of whole-genome sequences showed no increased variant numbers in the space-derivate compared to triplicates of the reference strain maintained on the ground. This result advanced cyanobacteria-based technologies to support human space exploration.
尽管人们越来越感兴趣地利用基于微生物的技术来支持人类太空探索,但不仅在生物过程方面,而且在非地球条件下微生物的生存能力和遗传稳定性方面,仍有许多未知数。在这里,研究了沙漠蓝藻 Chroococcidiopsis sp. CCMEE 029,以研究其在使用安装在国际空间站外部的 EXPOSE-R2 设施模拟的火星条件(UV 辐射和大气)下积累的 DNA 损伤的修复能力的稳健性。在将暴露于太空的细胞重新激活到地球上后,获得了 Chroococcidiopsis sp. CCMEE 029 的太空衍生体,并确定了基因组改变。与保存在地面上的参考菌株的三倍体相比,全基因组序列的比较分析显示太空衍生体中的变异数量没有增加。这一结果推进了基于蓝藻的技术,以支持人类太空探索。