Suppr超能文献

人类乙醛酸酶基因家族在健康和疾病中的作用。

The Human Glyoxalase Gene Family in Health and Disease.

机构信息

Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States.

出版信息

Chem Res Toxicol. 2022 Oct 17;35(10):1766-1776. doi: 10.1021/acs.chemrestox.2c00182. Epub 2022 Sep 1.

Abstract

The glyoxalase gene family consists of six structurally and functionally diverse enzymes with broad roles in metabolism. The common feature that defines this family is based on structural motifs that coordinate divalent cations which are required for activity. These family members have been implicated in a variety of physiological processes, including amino-acid metabolism (4-hydroxyphenylpyruvate dioxygenase; ), primary metabolism (methylmalonyl-CoA epimerase; ), and aldehyde detoxication (glyoxalase 1; ) and therefore have significant associations with disease. A central function of this family is the detoxification of reactive dicarbonyls (e.g., methylglyoxal), which react with cellular nucleophiles, resulting in the modification of lipids, proteins, and DNA. These damaging modifications activate canonical stress responses such as heat shock, unfolded protein, antioxidant, and DNA damage responses. Thus, glyoxalases serve an important role in homeostasis, preventing the pathogenesis of metabolic disease states, including obesity, diabetes, cardiovascular disease, renal failure, and aging. This review presents a thorough overview of the literature surrounding this diverse enzyme class. Although extensive literature exists for some members of this family (e.g., ), little is known about the physiological role of glyoxalase domain-containing protein 4 () and 5 (), paving the way for exciting avenues for future research.

摘要

糖醛酸酶基因家族由六个结构和功能不同的酶组成,在代谢中具有广泛的作用。定义这个家族的共同特征是基于协调二价阳离子的结构基序,二价阳离子是活性所必需的。这些家族成员与各种生理过程有关,包括氨基酸代谢(4-羟基苯丙酮酸双加氧酶;)、初级代谢(丙酰 CoA 变位酶;)和醛解毒(糖醛酸酶 1;),因此与疾病有显著的关联。这个家族的一个核心功能是解毒反应性二羰基化合物(例如,甲基乙二醛),这些化合物与细胞亲核试剂反应,导致脂质、蛋白质和 DNA 的修饰。这些破坏性修饰激活了典型的应激反应,如热休克、未折叠蛋白、抗氧化和 DNA 损伤反应。因此,糖醛酸酶在维持体内平衡方面发挥着重要作用,防止代谢疾病状态(包括肥胖、糖尿病、心血管疾病、肾衰竭和衰老)的发病。这篇综述全面概述了围绕这个多样化酶类的文献。尽管这个家族的一些成员(例如)有大量的文献,但对糖醛酸酶结构域蛋白 4()和 5()的生理作用知之甚少,为未来的研究开辟了令人兴奋的途径。

相似文献

1
The Human Glyoxalase Gene Family in Health and Disease.
Chem Res Toxicol. 2022 Oct 17;35(10):1766-1776. doi: 10.1021/acs.chemrestox.2c00182. Epub 2022 Sep 1.
4
Glyoxalase System in the Progression of Skin Aging and Skin Malignancies.
Int J Mol Sci. 2020 Dec 30;22(1):310. doi: 10.3390/ijms22010310.
5
Alr2321, a multiple stress inducible glyoxalase I of Anabaena sp. PCC7120 detoxifies methylglyoxal and reactive species oxygen.
Aquat Toxicol. 2019 Sep;214:105238. doi: 10.1016/j.aquatox.2019.105238. Epub 2019 Jun 27.
6
Glyoxalase Goes Green: The Expanding Roles of Glyoxalase in Plants.
Int J Mol Sci. 2017 Apr 24;18(4):898. doi: 10.3390/ijms18040898.
7
Glyoxalase system in yeasts: structure, function, and physiology.
Semin Cell Dev Biol. 2011 May;22(3):278-84. doi: 10.1016/j.semcdb.2011.02.002. Epub 2011 Feb 15.
8
Measurement of glyoxalase gene expression.
Biochem Soc Trans. 2014 Apr;42(2):495-9. doi: 10.1042/BST20140026.
9
Loss of Glyoxalase 1 Induces Compensatory Mechanism to Achieve Dicarbonyl Detoxification in Mammalian Schwann Cells.
J Biol Chem. 2017 Feb 24;292(8):3224-3238. doi: 10.1074/jbc.M116.760132. Epub 2016 Dec 12.
10
Prevention of dicarbonyl-mediated advanced glycation by glyoxalases: implication in skin aging.
Biochem Soc Trans. 2014 Apr;42(2):518-22. doi: 10.1042/BST20140017.

引用本文的文献

1
Does Gut Microbial Methylglyoxal Metabolism Impact Human Physiology?
Antioxidants (Basel). 2025 Jun 21;14(7):763. doi: 10.3390/antiox14070763.
5
Advanced Glycation End Products (AGEs) Webinar Meeting Report.
J Diabetes Sci Technol. 2025 Mar;19(2):576-581. doi: 10.1177/19322968241296541. Epub 2024 Nov 7.
7
A new method for quantifying glyoxalase II activity in biological samples.
Biol Methods Protoc. 2024 Sep 18;9(1):bpae069. doi: 10.1093/biomethods/bpae069. eCollection 2024.
8
Association of GLOD4 with Alzheimer's Disease in Humans and Mice.
J Alzheimers Dis. 2024;101(3):823-834. doi: 10.3233/JAD-240512.
9
Expression of in the Testis of the Qianbei Ma Goat and Its Effect on Leydig Cells.
Animals (Basel). 2024 Sep 8;14(17):2611. doi: 10.3390/ani14172611.
10

本文引用的文献

1
Biallelic variants in HPDL cause pure and complicated hereditary spastic paraplegia.
Brain. 2021 Jun 22;144(5):1422-1434. doi: 10.1093/brain/awab041.
2
Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures.
Nucleic Acids Res. 2021 Jul 2;49(W1):W431-W437. doi: 10.1093/nar/gkab314.
3
Dicarbonyl stress, protein glycation and the unfolded protein response.
Glycoconj J. 2021 Jun;38(3):331-340. doi: 10.1007/s10719-021-09980-0. Epub 2021 Mar 1.
5
UniProt: the universal protein knowledgebase in 2021.
Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489. doi: 10.1093/nar/gkaa1100.
7
Genenames.org: the HGNC and VGNC resources in 2021.
Nucleic Acids Res. 2021 Jan 8;49(D1):D939-D946. doi: 10.1093/nar/gkaa980.
8
Glyoxalase System as a Therapeutic Target against Diabetic Retinopathy.
Antioxidants (Basel). 2020 Oct 30;9(11):1062. doi: 10.3390/antiox9111062.
9
Ensembl 2021.
Nucleic Acids Res. 2021 Jan 8;49(D1):D884-D891. doi: 10.1093/nar/gkaa942.
10
Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators.
Biomed Pharmacother. 2020 Nov;131:110663. doi: 10.1016/j.biopha.2020.110663. Epub 2020 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验