Suppr超能文献

利用生物合成的第 21 种氨基酸扩展真核生物的遗传密码。

Expanding the eukaryotic genetic code with a biosynthesized 21st amino acid.

机构信息

Department of Chemistry, Rice University, Houston, Texas, USA.

Department of Biosciences, Rice University, Houston, Texas, USA.

出版信息

Protein Sci. 2022 Oct;31(10):e4443. doi: 10.1002/pro.4443.

Abstract

Genetic code expansion technology allows for the use of noncanonical amino acids (ncAAs) to create semisynthetic organisms for both biochemical and biomedical applications. However, exogenous feeding of chemically synthesized ncAAs at high concentrations is required to compensate for the inefficient cellular uptake and incorporation of these components into proteins, especially in the case of eukaryotic cells and multicellular organisms. To generate organisms capable of autonomously biosynthesizing an ncAA and incorporating it into proteins, we have engineered a metabolic pathway for the synthesis of O-methyltyrosine (OMeY). Specifically, we endowed organisms with a marformycins biosynthetic pathway-derived methyltransferase that efficiently converts tyrosine to OMeY in the presence of the co-factor S-adenosylmethionine. The resulting cells can produce and site-specifically incorporate OMeY into proteins at much higher levels than cells exogenously fed OMeY. To understand the structural basis for the substrate selectivity of the transferase, we solved the X-ray crystal structures of the ligand-free and tyrosine-bound enzymes. Most importantly, we have extended this OMeY biosynthetic system to both mammalian cells and the zebrafish model to enhance the utility of genetic code expansion. The creation of autonomous eukaryotes using a 21st amino acid will make genetic code expansion technology more applicable to multicellular organisms, providing valuable vertebrate models for biological and biomedical research.

摘要

遗传密码扩展技术允许使用非标准氨基酸(ncAAs)来创建半合成生物,用于生物化学和生物医学应用。然而,需要在外源高浓度下添加化学合成的 ncAAs,以补偿这些成分在细胞内摄取和掺入蛋白质中的效率低下,尤其是在真核细胞和多细胞生物的情况下。为了生成能够自主生物合成 ncAA 并将其掺入蛋白质中的生物体,我们设计了用于合成 O-甲基酪氨酸(OMeY)的代谢途径。具体来说,我们赋予生物体一种来源于马福平生物合成途径的甲基转移酶,该酶在辅因子 S-腺苷甲硫氨酸的存在下,有效地将酪氨酸转化为 OMeY。由此产生的细胞可以以比外源性添加 OMeY 的细胞更高的水平产生并特异性地将 OMeY 掺入蛋白质中。为了了解该转移酶对底物选择性的结构基础,我们解决了配体自由和酪氨酸结合酶的 X 射线晶体结构。最重要的是,我们已经将此 OMeY 生物合成系统扩展到哺乳动物细胞和斑马鱼模型中,以增强遗传密码扩展技术的实用性。使用 21 种氨基酸创建自主真核生物将使遗传密码扩展技术更适用于多细胞生物,为生物学和生物医学研究提供有价值的脊椎动物模型。

相似文献

4
Genetic Code Expansion in Mammalian Cells.遗传密码在哺乳动物细胞中的扩展。
Methods Mol Biol. 2023;2676:159-167. doi: 10.1007/978-1-0716-3251-2_11.

引用本文的文献

2

本文引用的文献

10
Therapeutic applications of genetic code expansion.遗传密码扩展的治疗应用。
Synth Syst Biotechnol. 2018 Oct 3;3(3):150-158. doi: 10.1016/j.synbio.2018.09.003. eCollection 2018 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验