Suppr超能文献

基于深度学习的非小细胞肺癌CT影像中EGFR突变状态的预测性影像生物标志物模型

Deep-Learning-Based Predictive Imaging Biomarker Model for EGFR Mutation Status in Non-Small Cell Lung Cancer from CT Imaging.

作者信息

Mahajan Abhishek, Kania Vatsal, Agarwal Ujjwal, Ashtekar Renuka, Shukla Shreya, Patil Vijay Maruti, Noronha Vanita, Joshi Amit, Menon Nandini, Kaushal Rajiv Kumar, Rane Swapnil, Chougule Anuradha, Vaidya Suthirth, Kaluva Krishna, Prabhash Kumar

机构信息

Department of Imaging, The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool L7 8YA, UK.

Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK.

出版信息

Cancers (Basel). 2024 Mar 12;16(6):1130. doi: 10.3390/cancers16061130.

Abstract

PURPOSE

The authors aimed to develop and validate deep-learning-based radiogenomic (DLR) models and radiomic signatures to predict the EGFR mutation in patients with NSCLC, and to assess the semantic and clinical features that can contribute to detecting EGFR mutations.

METHODS

Using 990 patients from two NSCLC trials, we employed an end-to-end pipeline analyzing CT images without precise segmentation. Two 3D convolutional neural networks segmented lung masses and nodules.

RESULTS

The combined radiomics and DLR model achieved an AUC of 0.88 ± 0.03 in predicting EGFR mutation status, outperforming individual models. Semantic features further improved the model's accuracy, with an AUC of 0.88 ± 0.05. CT semantic features that were found to be significantly associated with EGFR mutations were pure solid tumours with no associated ground glass component ( < 0.03), the absence of peripheral emphysema ( < 0.03), the presence of pleural retraction ( = 0.004), the presence of fissure attachment ( = 0.001), the presence of metastatic nodules in both the tumour-containing lobe ( = 0.001) and the non-tumour-containing lobe ( = 0.001), the presence of ipsilateral pleural effusion ( = 0.04), and average enhancement of the tumour mass above 54 HU ( < 0.001).

CONCLUSIONS

This AI-based radiomics and DLR model demonstrated high accuracy in predicting EGFR mutation, serving as a non-invasive and user-friendly imaging biomarker for EGFR mutation status prediction.

摘要

目的

作者旨在开发并验证基于深度学习的放射基因组(DLR)模型和放射组学特征,以预测非小细胞肺癌(NSCLC)患者的表皮生长因子受体(EGFR)突变,并评估有助于检测EGFR突变的语义和临床特征。

方法

我们使用来自两项NSCLC试验的990例患者,采用了一种无需精确分割即可分析CT图像的端到端流程。两个3D卷积神经网络对肺肿块和结节进行分割。

结果

在预测EGFR突变状态方面,联合放射组学和DLR模型的曲线下面积(AUC)为0.88±0.03,优于单个模型。语义特征进一步提高了模型的准确性,AUC为0.88±0.05。发现与EGFR突变显著相关的CT语义特征包括:无相关磨玻璃成分的纯实性肿瘤(<0.03)、无外周肺气肿(<0.03)、存在胸膜凹陷(=0.004)、存在叶间裂附着(=0.001)、在含肿瘤肺叶(=0.001)和不含肿瘤肺叶(=0.001)均存在转移结节、存在同侧胸腔积液(=0.04)以及肿瘤肿块平均强化高于54HU(<0.001)。

结论

这种基于人工智能的放射组学和DLR模型在预测EGFR突变方面显示出高准确性,可作为一种用于预测EGFR突变状态的非侵入性且用户友好的影像生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9a0/10968632/63ccebd59833/cancers-16-01130-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验