Suppr超能文献

利用临床试验和 ADNI 数据建立阿尔茨海默病进展模型,以预测 CDR-SB 的纵向轨迹。

Modeling Alzheimer's disease progression utilizing clinical trial and ADNI data to predict longitudinal trajectory of CDR-SB.

机构信息

Genentech, Inc., South San Francisco, California, USA.

Roche Products Australia Pty Ltd., Sydney, New South Wales, Australia.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2023 Jul;12(7):1029-1042. doi: 10.1002/psp4.12974. Epub 2023 May 2.

Abstract

There is strong interest in developing predictive models to better understand individual heterogeneity and disease progression in Alzheimer's disease (AD). We have built upon previous longitudinal AD progression models, using a nonlinear, mixed-effect modeling approach to predict Clinical Dementia Rating Scale - Sum of Boxes (CDR-SB) progression. Data from the Alzheimer's Disease Neuroimaging Initiative (observational study) and placebo arms from four interventional trials (N = 1093) were used for model building. The placebo arms from two additional interventional trials (N = 805) were used for external model validation. In this modeling framework, CDR-SB progression over the disease trajectory timescale was obtained for each participant by estimating disease onset time (DOT). Disease progression following DOT was described by both global progression rate (RATE) and individual progression rate (α). Baseline Mini-Mental State Examination and CDR-SB scores described the interindividual variabilities in DOT and α well. This model successfully predicted outcomes in the external validation datasets, supporting its suitability for prospective prediction and use in design of future trials. By predicting individual participants' disease progression trajectories using baseline characteristics and comparing these against the observed responses to new agents, the model can help assess treatment effects and support decision making for future trials.

摘要

人们对开发预测模型以更好地了解阿尔茨海默病(AD)中的个体异质性和疾病进展非常感兴趣。我们在前瞻性 AD 进展模型的基础上,采用非线性混合效应模型方法来预测临床痴呆评定量表总分(CDR-SB)的进展。该模型的数据来自阿尔茨海默病神经影像学倡议(观察性研究)和四项干预性试验的安慰剂组(N=1093),用于模型构建。另外两项干预性试验的安慰剂组(N=805)用于外部模型验证。在这个建模框架中,通过估计疾病起始时间(DOT),为每个参与者获得疾病轨迹时间尺度上的 CDR-SB 进展。DOT 后疾病的进展由全局进展率(RATE)和个体进展率(α)描述。基线简易精神状态检查和 CDR-SB 评分很好地描述了 DOT 和α的个体间变异性。该模型在外部验证数据集中成功预测了结果,支持其对前瞻性预测的适用性和未来试验设计中的应用。通过使用基线特征预测个体参与者的疾病进展轨迹,并将这些轨迹与新药物的观察反应进行比较,该模型可以帮助评估治疗效果并支持未来试验的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/264c/10349194/0d9da2ab86fe/PSP4-12-1029-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验