Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
Systems Engineering, Cornell University, Ithaca, NY 14853, USA.
Sci Adv. 2023 Jun 16;9(24):eadg6740. doi: 10.1126/sciadv.adg6740. Epub 2023 Jun 14.
Recent global logistics and geopolitical challenges draw attention to the potential raw material shortages for electric vehicle (EV) batteries. Here, we analyze the long-term energy and sustainability prospects to ensure a secure and resilient midstream and downstream value chain for the U.S. EV battery market amid uncertain market expansion and evolving battery technologies. With current battery technologies, reshoring and ally-shoring the midstream and downstream EV battery manufacturing will reduce the carbon footprint by 15% and energy use by 5 to 7%. While next-generation cobalt-free battery technologies will achieve up to 27% carbon emission reduction, transitioning to 54% less carbon-intensive blade lithium iron phosphate may diminish the mitigation benefits of supply chain restructuring. Our findings underscore the importance of adopting nickel from secondary sources and nickel-rich ores. However, the advantages of restructuring the U.S. EV battery supply chain depend on projected battery technology advancements.
近期的全球物流和地缘政治挑战引起了人们对电动汽车 (EV) 电池潜在原材料短缺的关注。在这里,我们分析了长期的能源和可持续性前景,以确保美国电动汽车电池市场在不确定的市场扩张和不断发展的电池技术中,中游和下游价值链具有安全性和弹性。在当前的电池技术下,使中游和下游电动汽车电池制造回流和近岸化将减少 15%的碳足迹和 5 到 7%的能源使用。虽然下一代无钴电池技术将实现高达 27%的碳排放减少,但过渡到含碳量少 54%的刀片式磷酸铁锂电池可能会降低供应链重组的缓解效益。我们的研究结果强调了采用二次来源和富镍矿石中的镍的重要性。然而,重组美国电动汽车电池供应链的优势取决于预计的电池技术进步。