文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用双孢蘑菇提取物生物合成的银纳米粒子在食品安全中的应用:合成、表征、抗菌功效和毒理学评估。

Utilization of biosynthesized silver nanoparticles from Agaricus bisporus extract for food safety application: synthesis, characterization, antimicrobial efficacy, and toxicological assessment.

机构信息

Undergraduate student, New Programs, Faculty of Agriculture, Ain Shams University, PO Box 68, Hadayek Shoubra, Cairo, 11241, Egypt.

Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, PO Box 68, Hadayek Shoubra, Cairo, 11241, Egypt.

出版信息

Sci Rep. 2023 Sep 12;13(1):15048. doi: 10.1038/s41598-023-42103-3.


DOI:10.1038/s41598-023-42103-3
PMID:37700007
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10497677/
Abstract

The emergence of antimicrobial resistance in foodborne bacterial pathogens has raised significant concerns in the food industry. This study explores the antimicrobial potential of biosynthesized silver nanoparticles (AgNPs) derived from Agaricus bisporus (Mushroom) against foodborne bacterial pathogens. The biosynthesized AgNPs were characterized using various techniques, including UV-visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, high-resolution scanning electron microscopy with energy dispersive X-ray spectroscopy, dynamic light scattering, and zeta potential analysis. The antibacterial activity of the AgNPs was tested against a panel of foodborne bacterial strains, and their cytotoxicity was evaluated on normal human skin fibroblasts. Among the tested strains, Pseudomonas aeruginosa ATCC 27853 showed the highest sensitivity with an inhibition zone diameter (IZD) of 48 mm, while Klebsiella quasipneumoniae ATTC 700603 and Bacillus cereus ATCC 11778 displayed the highest resistance with IZDs of 20 mm. The silver cations released by AgNPs demonstrated strong bactericidal effects against both Gram-positive (G + ve) and Gram-negative (G - ve) bacteria, as evidenced by the minimum inhibitory concentration/minimum bactericidal concentration (MBC/MIC) ratio. Moreover, cytotoxicity testing on normal human skin fibroblasts (HSF) indicated that AgNPs derived from the mushroom extract were safe, with a cell viability of 98.2%. Therefore, AgNPs hold promise as an alternative means to inhibit biofilm formation in the food industry sector.

摘要

食源性细菌病原体对抗菌药物的耐药性的出现引起了食品行业的高度关注。本研究探讨了从双孢蘑菇(Agaricus bisporus)中生物合成的银纳米粒子(AgNPs)对食源性细菌病原体的抗菌潜力。采用紫外-可见分光光度法、X 射线衍射、傅里叶变换红外光谱、高分辨率扫描电子显微镜结合能谱分析、动态光散射和zeta 电位分析等多种技术对生物合成的 AgNPs 进行了表征。测试了 AgNPs 对一系列食源性细菌菌株的抗菌活性,并在正常人体皮肤成纤维细胞上评估了其细胞毒性。在测试的菌株中,铜绿假单胞菌 ATCC 27853 表现出最高的敏感性,抑菌圈直径(IZD)为 48mm,而肺炎克雷伯菌 ATTC 700603 和蜡样芽孢杆菌 ATCC 11778 表现出最高的抗性,IZD 为 20mm。AgNPs 释放的银离子对革兰氏阳性(G+ve)和革兰氏阴性(G-ve)细菌均具有很强的杀菌作用,最低抑菌浓度/最低杀菌浓度(MBC/MIC)比值证明了这一点。此外,对正常人体皮肤成纤维细胞(HSF)的细胞毒性测试表明,蘑菇提取物衍生的 AgNPs 是安全的,细胞活力为 98.2%。因此,AgNPs 有望成为抑制食品工业中生物膜形成的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/e5334badba65/41598_2023_42103_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/0ced744ab437/41598_2023_42103_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/a9f09de1f075/41598_2023_42103_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/f8f2775ffed9/41598_2023_42103_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/122aa29a1732/41598_2023_42103_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/0f1328baec31/41598_2023_42103_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/8195f18ec1bc/41598_2023_42103_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/cc6d11e330c0/41598_2023_42103_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/5a2111ae6d0c/41598_2023_42103_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/96f3fb53ff78/41598_2023_42103_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/e5334badba65/41598_2023_42103_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/0ced744ab437/41598_2023_42103_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/a9f09de1f075/41598_2023_42103_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/f8f2775ffed9/41598_2023_42103_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/122aa29a1732/41598_2023_42103_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/0f1328baec31/41598_2023_42103_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/8195f18ec1bc/41598_2023_42103_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/cc6d11e330c0/41598_2023_42103_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/5a2111ae6d0c/41598_2023_42103_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/96f3fb53ff78/41598_2023_42103_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f4/10497677/e5334badba65/41598_2023_42103_Fig10_HTML.jpg

相似文献

[1]
Utilization of biosynthesized silver nanoparticles from Agaricus bisporus extract for food safety application: synthesis, characterization, antimicrobial efficacy, and toxicological assessment.

Sci Rep. 2023-9-12

[2]
Facile Synthesis, Characterization, and Antimicrobial Assessment of a Silver/Montmorillonite Nanocomposite as an Effective Antiseptic against Foodborne Pathogens for Promising Food Protection.

Molecules. 2023-4-25

[3]
Biogenic Silver Nanoparticles from Two Varieties of and Their Antibacterial Activity.

Molecules. 2022-11-7

[4]
Biogenic Synthesis of Silver Nanoparticles using (Decne): Assessment of their Antioxidant, Antimicrobial and Cytotoxic Activities.

Pharm Nanotechnol. 2023

[5]
Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line.

Asian Pac J Cancer Prev. 2014

[6]
Biogenic nanosilver bearing antimicrobial and antibiofilm activities and its potential for application in agriculture and industry.

Front Microbiol. 2023-2-20

[7]
Biosynthesis and characterization of silver nanoparticles from Punica granatum (pomegranate) peel waste and its application to inhibit foodborne pathogens.

Sci Rep. 2023-11-9

[8]
Green Synthesis of Silver Nanoparticles of Leaf Extract and their Cytotoxicity Activity against Neuroblastoma SHSY-5Y Cell Lines, Antimicrobial and Antioxidant Studies.

Recent Pat Nanotechnol. 2023

[9]
Ecofriendly phytofabrication of silver nanoparticles using aqueous extract of Cuphea carthagenensis and their antioxidant potential and antibacterial activity against clinically important human pathogens.

Chemosphere. 2022-8

[10]
Antimicrobial and cytotoxic activity of silver nanoparticles synthesized from two haloalkaliphilic actinobacterial strains alone and in combination with antibiotics.

J Appl Microbiol. 2018-3-23

引用本文的文献

[1]
Biological activities and application of Rosmarinus officinalis extract to improve the preservation and microbial qualities of some local meat products.

Sci Rep. 2025-8-21

[2]
Selenium nanoparticle loaded on PVA/chitosan biofilm synthesized from orange peels: antimicrobial and antioxidant properties for plum preservation.

BMC Chem. 2025-8-20

[3]
HPLC based identification of phenolics and biological activities in Elaphomyces mushroom extracts.

Sci Rep. 2025-7-26

[4]
Biogenic silver nanoparticles synthesized from Pseudomonas fluorescens-mediated olive cake waste: antimicrobial, larvicidal activity against Culex pipiens and cytotoxicity assessment.

BMC Biotechnol. 2025-7-21

[5]
Utilization of agro-industrial wastes and by-products by Bacillus subtilis for the biogenic synthesis and In-Depth characterization and cytotoxicity assessment of silver nanoparticles.

BMC Microbiol. 2025-5-14

[6]
In vitro investigation of Mangifera indica L. peel extracts: antibacterial, antioxidant, and docking studies.

AMB Express. 2025-5-8

[7]
Biosynthesis of silver nanoparticles by Talaromyces funiculosus for therapeutic applications and safety evaluation.

Sci Rep. 2025-4-21

[8]
Lipopeptide iturin C from endophytic Bacillus sp. effectively inhibits biofilm formation and prevents the adhesion of topical and food-borne pathogens in vitro and on biomedical devices.

Arch Microbiol. 2025-2-16

[9]
Optimization, characterization and biosafety of oregano, rosemary and mint oil mixture against Penicillium digitatum in citrus using L-optimal mixture design.

AMB Express. 2025-1-27

[10]
Compatibility and antimicrobial activity of silver nanoparticles synthesized using Lycopersicon esculentum peels.

AMB Express. 2024-11-5

本文引用的文献

[1]
Enhancing durability and sustainable preservation of Egyptian stone monuments using metabolites produced by Streptomyces exfoliatus.

Sci Rep. 2023-6-10

[2]
Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Lawsonia inermis Against Common Pathogens from Urinary Tract Infection.

Appl Biochem Biotechnol. 2024-1

[3]
A mini review on green nanotechnology and its development in biological effects.

Arch Microbiol. 2023-3-22

[4]
Biosynthesis of Silver and Gold Nanoparticles and Their Efficacy Towards Antibacterial, Antibiofilm, Cytotoxicity, and Antioxidant Activities.

Appl Biochem Biotechnol. 2023-2

[5]
Cefotaxime incorporated bimetallic silver-selenium nanoparticles: promising antimicrobial synergism, antibiofilm activity, and bacterial membrane leakage reaction mechanism.

RSC Adv. 2022-9-20

[6]
Microbial Degradation, Spectral analysis and Toxicological Assessment of Malachite Green Dye by .

Molecules. 2022-9-30

[7]
Green Synthesis and Antibacterial Activity of Ag/FeO Nanocomposite Using Extract.

Bioengineering (Basel). 2022-9-8

[8]
-Mediated Silver Nanoparticles: Antifungal and Antioxidant Biogenic Tool for Suppressing Mucormycosis Fungi.

J Fungi (Basel). 2022-1-27

[9]
Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications.

Nanomaterials (Basel). 2022-1-28

[10]
Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis.

Lancet. 2022-2-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索