Suppr超能文献

SPIRAL:整合和对齐不同实验、条件和技术下的空间分辨转录组学数据。

SPIRAL: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies.

机构信息

School of Software Engineering, Beijing Jiaotong University, Beijing, 100044, China.

MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China.

出版信息

Genome Biol. 2023 Oct 20;24(1):241. doi: 10.1186/s13059-023-03078-6.

Abstract

Properly integrating spatially resolved transcriptomics (SRT) generated from different batches into a unified gene-spatial coordinate system could enable the construction of a comprehensive spatial transcriptome atlas. Here, we propose SPIRAL, consisting of two consecutive modules: SPIRAL-integration, with graph domain adaptation-based data integration, and SPIRAL-alignment, with cluster-aware optimal transport-based coordination alignment. We verify SPIRAL with both synthetic and real SRT datasets. By encoding spatial correlations to gene expressions, SPIRAL-integration surpasses state-of-the-art methods in both batch effect removal and joint spatial domain identification. By aligning spots cluster-wise, SPIRAL-alignment achieves more accurate coordinate alignments than existing methods.

摘要

将不同批次生成的空间转录组学(SRT)正确整合到统一的基因-空间坐标系统中,可以构建一个全面的空间转录组图谱。在这里,我们提出了 SPIRAL,它由两个连续的模块组成:SPIRAL-integration,基于图域自适应的数据集成;和 SPIRAL-alignment,基于聚类感知的最优传输协调对齐。我们使用合成和真实的 SRT 数据集来验证 SPIRAL。通过对空间相关性进行编码以得到基因表达,SPIRAL-integration 在去除批次效应和联合空间域识别方面均优于现有方法。通过逐点聚类对齐,SPIRAL-alignment 比现有方法实现了更精确的坐标对齐。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721b/10590036/05b3475370cf/13059_2023_3078_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验