Tu Wenqian, Zhang Lihua
School of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan, China.
PLoS Comput Biol. 2025 Apr 3;21(4):e1012948. doi: 10.1371/journal.pcbi.1012948. eCollection 2025 Apr.
Due to the rapid development of spatial sequencing technologies, large amounts of spatial transcriptomic datasets have been generated across various technological platforms or different biological conditions (e.g., control vs. treatment). Spatial transcriptomics data coming from different platforms usually has different resolutions. Moreover, current methods do not consider the heterogeneity of spatial structures within and across slices when modeling spatial transcriptomics data with graph-based methods. In this study, we propose a community-enhanced graph contrastive learning-based method named Tacos to integrate multiple spatial transcriptomics data. We applied Tacos to several real datasets coming from different platforms under different scenarios. Systematic benchmark analyses demonstrate Tacos's superior performance in integrating different slices. Furthermore, Tacos can accurately denoise the spatially resolved transcriptomics data.
由于空间测序技术的快速发展,在各种技术平台或不同生物条件下(如对照与处理)已经产生了大量的空间转录组数据集。来自不同平台的空间转录组数据通常具有不同的分辨率。此外,当前的方法在使用基于图的方法对空间转录组数据进行建模时,没有考虑切片内和切片间空间结构的异质性。在本研究中,我们提出了一种名为Tacos的基于社区增强图对比学习的方法,用于整合多个空间转录组数据。我们将Tacos应用于来自不同平台、不同场景下的几个真实数据集。系统的基准分析证明了Tacos在整合不同切片方面的卓越性能。此外,Tacos可以准确地对空间分辨的转录组数据进行去噪。