Suppr超能文献

利用独立成分的组合特征和脑电图数据的预测概率诊断癫痫发作。

Diagnosing epileptic seizures using combined features from independent components and prediction probability from EEG data.

作者信息

Khalid Madiha, Raza Ali, Akhtar Adnan, Rustam Furqan, Ballester Julien Brito, Rodriguez Carmen Lili, Díez Isabel de la Torre, Ashraf Imran

机构信息

School of Computer Science and Engineering, Central South University, Changsha, Hunan, China.

Department of Software Engineering, University Of Lahore, Lahore, Pakistan.

出版信息

Digit Health. 2024 Nov 5;10:20552076241277185. doi: 10.1177/20552076241277185. eCollection 2024 Jan-Dec.

Abstract

OBJECTIVE

Epileptic seizures are neurological events that pose significant risks of physical injuries characterized by sudden, abnormal bursts of electrical activity in the brain, often leading to loss of consciousness and uncontrolled movements. Early seizure detection is essential for timely treatments and better patient outcomes. To address this critical issue, there is a need for an advanced artificial intelligence approach for the early detection of epileptic seizure disorder.

METHODS

This study primarily focuses on designing a novel ensemble approach to perform early detection of epileptic seizure disease with high performance. A novel ensemble approach consisting of a fast, independent component analysis random forest (FIR) and prediction probability is proposed, which uses electroencephalography (EEG) data to investigate the efficacy of the proposed approach for early detection of epileptic seizures. The FIR model extracts independent components and class prediction probability features, creating a new feature set. The proposed model combined integrated component analysis (ICA) with predicting probability to enhance seizure recognition accuracy scores. Extensive experimental evaluations demonstrate that FIR assists machine learning models to obtain superior results compared to original features.

RESULTS

The research gap is addressed using combined features to improve the performance of epileptic seizure detection compared to a single feature set. In particular, the ensemble model FIR with support vector machine (FIR + SVM) outperforms other methods, achieving an accuracy of 98.4% for epileptic seizure detection.

CONCLUSIONS

The proposed FIR has the potential for early diagnosis of epileptic seizures and can significantly help the medical industry with enhanced detection and timely interventions.

摘要

目的

癫痫发作是一种神经学事件,具有重大身体受伤风险,其特征是大脑中突然出现异常电活动爆发,常导致意识丧失和不受控制的运动。早期癫痫发作检测对于及时治疗和改善患者预后至关重要。为解决这一关键问题,需要一种先进的人工智能方法来早期检测癫痫发作障碍。

方法

本研究主要聚焦于设计一种新颖的集成方法,以高性能地早期检测癫痫发作疾病。提出了一种由快速独立成分分析随机森林(FIR)和预测概率组成的新颖集成方法,该方法使用脑电图(EEG)数据来研究所提方法对早期检测癫痫发作的有效性。FIR模型提取独立成分和类别预测概率特征,创建一个新的特征集。所提模型将集成成分分析(ICA)与预测概率相结合,以提高癫痫发作识别准确率得分。广泛的实验评估表明,与原始特征相比,FIR有助于机器学习模型获得更好的结果。

结果

与单个特征集相比,使用组合特征解决了研究差距,提高了癫痫发作检测的性能。特别是,带有支持向量机的集成模型FIR(FIR + SVM)优于其他方法,在癫痫发作检测中达到了98.4%的准确率。

结论

所提的FIR有潜力用于癫痫发作的早期诊断,并能显著帮助医疗行业加强检测和及时干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1945/11536591/e35b9c588c66/10.1177_20552076241277185-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验