Suppr超能文献

用于评估中风风险的视网膜成像:一项系统评价。

Retinal imaging for the assessment of stroke risk: a systematic review.

作者信息

Girach Zain, Sarian Arni, Maldonado-García Cynthia, Ravikumar Nishant, Sergouniotis Panagiotis I, Rothwell Peter M, Frangi Alejandro F, Julian Thomas H

机构信息

Sheffield Medical School, University of Sheffield, Beech Hill Rd, Broomhall, Sheffield, UK.

Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Oxford Rd, Manchester, UK.

出版信息

J Neurol. 2024 May;271(5):2285-2297. doi: 10.1007/s00415-023-12171-6. Epub 2024 Mar 2.

Abstract

BACKGROUND

Stroke is a leading cause of morbidity and mortality. Retinal imaging allows non-invasive assessment of the microvasculature. Consequently, retinal imaging is a technology which is garnering increasing attention as a means of assessing cardiovascular health and stroke risk.

METHODS

A biomedical literature search was performed to identify prospective studies that assess the role of retinal imaging derived biomarkers as indicators of stroke risk.

RESULTS

Twenty-four studies were included in this systematic review. The available evidence suggests that wider retinal venules, lower fractal dimension, increased arteriolar tortuosity, presence of retinopathy, and presence of retinal emboli are associated with increased likelihood of stroke. There is weaker evidence to suggest that narrower arterioles and the presence of individual retinopathy traits such as microaneurysms and arteriovenous nicking indicate increased stroke risk. Our review identified three models utilizing artificial intelligence algorithms for the analysis of retinal images to predict stroke. Two of these focused on fundus photographs, whilst one also utilized optical coherence tomography (OCT) technology images. The constructed models performed similarly to conventional risk scores but did not significantly exceed their performance. Only two studies identified in this review used OCT imaging, despite the higher dimensionality of this data.

CONCLUSION

Whilst there is strong evidence that retinal imaging features can be used to indicate stroke risk, there is currently no predictive model which significantly outperforms conventional risk scores. To develop clinically useful tools, future research should focus on utilization of deep learning algorithms, validation in external cohorts, and analysis of OCT images.

摘要

背景

中风是发病和死亡的主要原因。视网膜成像可对微血管系统进行无创评估。因此,视网膜成像作为评估心血管健康和中风风险的一种手段,正日益受到关注。

方法

进行了一项生物医学文献检索,以确定评估视网膜成像衍生生物标志物作为中风风险指标作用的前瞻性研究。

结果

本系统评价纳入了24项研究。现有证据表明,较宽的视网膜小静脉、较低的分形维数、增加的小动脉迂曲度、视网膜病变的存在以及视网膜栓子的存在与中风可能性增加相关。有较弱的证据表明,较窄的小动脉以及个体视网膜病变特征(如微动脉瘤和动静脉交叉征)的存在表明中风风险增加。我们的综述确定了三种利用人工智能算法分析视网膜图像以预测中风的模型。其中两种专注于眼底照片,而另一种还利用了光学相干断层扫描(OCT)技术图像。构建的模型表现与传统风险评分相似,但并未显著超过其性能。尽管该数据维度更高,但本综述中仅确定了两项使用OCT成像的研究。

结论

虽然有强有力的证据表明视网膜成像特征可用于指示中风风险,但目前尚无显著优于传统风险评分的预测模型。为了开发临床有用的工具,未来的研究应侧重于深度学习算法的应用、外部队列中的验证以及OCT图像的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e0/11055763/ed3c20a4d161/415_2023_12171_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验