Yunus Aisyah, Mokhtar Norfilza Mohd, Raja Ali Raja Affendi, Ahmad Kendong Siti Maryam, Ahmad Hajar Fauzan
Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia.
Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), 56000 Kuala Lumpur, Malaysia.
MethodsX. 2024 Feb 23;12:102623. doi: 10.1016/j.mex.2024.102623. eCollection 2024 Jun.
Colorectal cancer poses a significant threat to global health, necessitating the development of effective early detection techniques. However, the potential of the fungal microbiome as a putative biomarker for the detection of colorectal adenocarcinoma has not been extensively explored. We analyzed the viability of implementing the fungal mycobiome for this purpose. Biopsies were collected from cancer and polyp patients. The total genomic DNA was extracted from the biopsy samples by utilizing a comprehensive kit to ensure optimal microbial DNA recovery. To characterize the composition and diversity of the fungal mycobiome, high-throughput amplicon sequencing targeting the internal transcribed spacer 1 (ITS1) region was proposed. A comparative analysis revealed discrete fungal profiles among the diseased groups. Here, we also proposed pipelines based on a predictive model using statistical and machine learning algorithms to accurately differentiate colorectal adenocarcinoma and polyp patients from normal individuals. These findings suggest the utility of gut mycobiome as biomarkers for the detection of colorectal adenocarcinoma. Expanding our understanding of the role of the gut mycobiome in disease detection creates novel opportunities for early intervention and personalized therapeutic strategies for colorectal cancer.•Detailed method to identify the gut mycobiome in colorectal cancer patients using ITS-specific amplicon sequencing.•Application of machine learning algorithms to the identification of potential mycobiome biomarkers for non-invasive colorectal cancer screening.•Contribution to the advancement of innovative colorectal cancer diagnostic methods and targeted therapies by applying gut mycobiome knowledge.
结直肠癌对全球健康构成重大威胁,因此需要开发有效的早期检测技术。然而,真菌微生物群作为结直肠腺癌检测的潜在生物标志物的潜力尚未得到广泛探索。我们分析了为此目的应用真菌微生物组的可行性。从癌症患者和息肉患者身上采集活检样本。利用一套综合试剂盒从活检样本中提取总基因组DNA,以确保最佳的微生物DNA回收率。为了表征真菌微生物组的组成和多样性,提出了针对内部转录间隔区1(ITS1)区域的高通量扩增子测序。比较分析揭示了患病组之间不同的真菌谱。在此,我们还基于使用统计和机器学习算法的预测模型提出了流程,以准确区分结直肠腺癌和息肉患者与正常个体。这些发现表明肠道微生物组作为结直肠腺癌检测生物标志物的实用性。扩展我们对肠道微生物组在疾病检测中作用的理解,为结直肠癌的早期干预和个性化治疗策略创造了新的机会。
•使用ITS特异性扩增子测序鉴定结直肠癌患者肠道真菌微生物组的详细方法。
•机器学习算法在鉴定非侵入性结直肠癌筛查潜在微生物组生物标志物中的应用。
•通过应用肠道微生物组知识对创新的结直肠癌诊断方法和靶向治疗的推进做出贡献。